Evolving Decision Strategies for Computational Intelligence Agents

Martin Šlapák

Department of Theoretical Computer Science FIT CTU in Prague, Czech Republic slapamar@fit.cvut.cz

13. 3. 2014

Martin Šlapák, slapamar@fit.cvut.cz Evolving Decision Strategies for Computational Agents

What is an agent?

A formal definition by M. Wooldrige

An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives.

- Main benefits of agents:
 - encapsulation (local data, knowledge, ...)
 - persistence
 - autonomy
- Agent's inteligence is usually hardwired.
- An agent can have own "inteligence", it can evaluate some behaviors.
- My work is focused on adaptive approach.

Multi-agent system

- Multiple (intelligent) agents interacting within an environment.
- Cooperative vs. competitive.
- Many other points of view: autonomy, decentralization, local information, type of environment (phys./virtual, discrete, continuous)

Martin Šlapák, slapamar@fit.cvut.cz Evolving Decision Strategies for Computational Agents

Problem definition and main objectives

- Multi-agent system for machine learning.
- Distributed solving of given task set.
- Optimize some criteria (mean error, time, ...) for one task.
- Manager is "dumb" (send tasks randomly).
- Workers have to determine (localy) whether accept or reject the offered task in order to fit criterium.

Manager

Workers

Martin Šlapák, slapamar@fit.cvut.cz

Agent types

- Manager agent's behaviours:
 - task sending (an offer to worker)
 - receiving back solved or rejected tasks
 - communicating with experimental environment (sending results back to evolution – fitness counting)
- Worker agent's behaviours:
 - decision making (about task accepting)
 - task solving
- Type of datamining models in workers:
 - Radial-basis function (RBF)
 - Naive bayes
 - Multilayer perceptron (MLP)

Tasks

- Classification
- Tasks come from UCI Machine learning repository¹
- We selected: car, breast-cancer, iris, lung-cancer, tic-tac-toe and weather
- Number of tasks:
 - 30 for evolution of decision making systems
 - 300+ for performance test of the best evolved DM systems
- Task metadata:
 - # of attributes
 - # of classes
 - # of instances
 - used in prediction of results (explained later)

¹Available at http://archive.ics.uci.edu/ml/datasets.html

Problem's criteria

- mean error average error of the whole task set
- time average time to solve one task
 - real time seconds
 - virtual time ticks (steps)
 - aspects of worker's buffer

multicriteria – mean error, virtual time

Decision making

- Polynomial (tree structure) connects together all local attributes of an agent and tasks.
- How to make a decision?
 - 1. Substitute all variables in a tree by actual values of attributes.
 - 2. Evaluate tree as polynomial and obtaing one real number R.
 - 3. If R > 0 then accept task else reject task.

Decision making – attributes

The tree connects together N local attributes of an agent:

- solvedTasks is number of tasks solved by an agent,
- expSolSteps is expected time (steps) to solve actual task,
- stepsSolved is number of steps of actual task ever done,
- currentSuit represents agent-task compatibility of actual task,
- [deprecated] avgTaskTime is average expected solving time per task in agent's task buffer,
- [deprecated] avgBuffSuit which means an average compatibility of enqueued tasks in agent's buffer.
- [new] offeredSuit represents agent-task compatibility of new offered task,
- [new] percentSSol is stepsSolved in percentage,
- [new] ticksToEnd represents how many ticks left to solve actual task

Decision making – sensitivity analysis

Martin Šlapák, slapamar@fit.cvut.cz

Decision making - combination of attributes by a polynomial

inner nodes: ADD, SUB, MUL

leaf nodes: double constant, double / integer attribute

Decision making - from polynomial to general tree structures

- inner nodes: new ternary operator IF
- possibility to make several "smaller" decisions based only on some subset of attributes

Martin Šlapák, slapamar@fit.cvut.cz Evolving Decisio

Decision making – general tree structures (IF operator)

Figure: Example of an evolved tree with *IF* operator

Evolution (Genetic Programming)

- Common genetic algorithm is used.
- Evolved for 200–500 generations.
- Tournament selection (tournament size was up to 20 %).
- Size of population is only about 20–30 individuals.
- Individual is polynomial structure represented as N-ary tree.

▶ encoding: natural ~ Java objects

- Calculation of the fitness function is extremely expensive (time ascpect).
 - Run whole experiment for given individual.
 - Use of precomputed results.
- Island model for parallel evolution.
- Elitism is used.

Evolution (GP) – mutation operators

Probability of mutation 10 %.
 Inner nodes: change node operation
 Leaf nodes: change constant

 Add δ to the leaf value.
 Change slightly this δ:

$$\delta_{\mathsf{T}+1} = \delta_{\mathsf{T}} \cdot \left(1.1 - \frac{\mathsf{rnd}()}{5} \right)$$

initialization of δ :

$$\delta = (-1)^r \cdot \frac{1}{3}v$$

where r is chosen at random from set $\{0,1\}$ and v is initial δ value.

Evolution (GP) – cross operator

- Swap randomly selected distinct subtrees.
- How to deal with bloating problem?
 - Ignore it! :-)
 - Omit crossover.
 - \blacktriangleright Prevent it by generating only valid trees by some grammar. \sim Kitano
 - Swap similar subtrees. ~ my approach
- Randomly select 1st individual and one of its subtrees, randomly select 2nd individual; for 2nd one generate all possible subtrees and select from them.
- Similarity metric number of identical attributes in leaves of two candidate trees.

Fitness

 Fitness of individual is total experiment time combined with AVG task time.

$$f(\mathsf{individual}) = 2 \cdot rac{R_{experiment}}{T_{experiment}} + rac{R_{avgTask}}{T_{avgTask}}$$

 R_x ... empiric values obtained by 100 times run experiment with random decision making.

 Fitness of individual is averaged mean error over the whole task set.

$$E_E(\text{individual}) = \frac{\sum_{t=1}^{\text{taskCnt}} E_t}{\text{taskCnt}}$$

3. Fitness of individual is averaged time of one task.

$$f_{\mathcal{T}}(\mathsf{individual}) = rac{\sum_{t=1}^{\mathsf{taskCnt}} \mathcal{T}_t}{\mathsf{taskCnt}}$$

$$f_c(\text{individual}) = \alpha \cdot \frac{1}{f_r} + \beta \cdot \frac{1}{f_r}$$

Martin Šlapák, slapamar@fit.cvut.cz

Precomputed database of results

- Each fitness evaluation means to run the whole experiment.
 - Extremely time expensive.
 - ▶ Real time ⇒ virtual time ⇒ in fact no solving of classifying tasks, using precomputed results (Pikater project).
- 18 combinations of pair agent-task
- \blacktriangleright pprox 105k rows
- Used to obtain:
 - some attributes eg. an expected number of *ticks/steps* to solve an offered task.
 - final error of the solved task.

Model learning for parameter estimation

- Based on precomputed DB, why not to learn regression models for predicting that attributes?
- Actual work not yet tested! ;-)
- Preliminary: KNN (k=5) seems to be the best for parameter estimation of MLP.

Martin Šlapák, slapamar@fit.cvut.cz

Results – random DM vs. evolved polynomial

Table: Average computation times for non-informed solutions with fixed task accept ratio and decision making based on evolved tree.

decision method	øtime per task [ms]	time for task set [ms]
accept 2% of tasks	1 004	99 432
accept 10% of tasks	8 593	882 961
accept 50% of tasks	12 450	1 458 572
accept 90% of tasks	16 299	1 648 996
accept 100% of tasks	16 453	1 691 372
best expression	1013	120 636

Results - best trees evolved with or without crossover

Table: Comparison of different decision making approaches

Decision method	Random	Best tree	Best tree
	50 % accept. ratio	without crossover	with crossover
Real acceptance ratio	0.4845	0.4286	1.0000
Avg. task error	0.1733	0.1375	0.0929
Computational time	5248 ms	1749 ms	1895 ms
Avg. value of polynomial	-	26.4870	90.3724

*) All computed by workers with buffer for incoming tasks.

Results – multicriteria optimization, impact of IF

Figure: Impact of adding IF operator; combined fitness $f_c = \alpha \cdot \frac{1}{f_F} + \beta \cdot \frac{1}{f_T}$

Martin Šlapák, slapamar@fit.cvut.cz Evolving Decision Strategies for Computational Agents

Results – MCO, SCO, impact of IF

Table: Results of experiments with fitness, agent's attrs and tree's ops

old agent's attrs without deprecated² attributes

solvedTasks, expSolSteps, stepsSolved, currentSuit

best fitness	ops: MUL, ADD, SUB	ops: MUL, ADD, SUB, IF
A = 1/normTime	43.525	36.404
B = 1/normAvgTaskErr	2.371	2.219
$[A+B]_{norm}$	1.175	1.521

old agent's attrs without deprecated and with new attributes new attributes: offeredSuit, percentSSol, ticksToEnd

best fitness	ops: MUL, ADD, SUB	ops: MUL, ADD, SUB, IF
A = 1/normTime	48.753	40.583
B = 1/normAvgTaskErr	2.185	2.240
$[A+B]_{norm}$	1.635	1.8533

attrs overview

²Due to buffer removal: avgTaskTime, avgBuffSuit

Martin Šlapák, slapamar@fit.cvut.cz

Results – multicriteria optimization NSGA-II, criterions: f_E , f_T

Multicriterion evolution APG (data 2013)

Martin Šlapák, slapamar@fit.cvut.cz

Results – multicriteria optimization NSGA-II, criterions: f_E , f_T

Table: The summary of the best results of each experiment

experiment	mean squared error	time [ticks]
SCO old attributes	0.3118	1.0120
SCO new attributes	0.3267	1.0117
SCO if operator	0.3272	1.0127
MCO all from 1 st front	0.3175	1.0215
	0.4273	1.0143
	0.4935	1.0095

Future work & Conclusion

- Replace precomputed DB with trained predicting models.
- Make use of well known general decision trees or any other method (no supervised learning approach – we don't know which combination of agent's attributes is good to ACC/REJ).
- Tune parameters of genetic programming such as impact of crossover etc. (Some ideas from NEAT.)
- Verify the best evolved trees on significantly larger task sets.

Intro Elements Decision making Evolution Results

Questions?

Martin Šlapák, slapamar@fit.cvut.cz Evolving Decision Strategies for Computational Agents