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Classifier Combining

classification – predict to which class a given pattern belongs

classifier combining/aggregation/fusion/selection/. . .

create a team of classifiers and aggregate their predictions
better generalization properties
lower error rate
better robustness
less sensitive to overfitting
the resulting system behaves as a single classifier
no generally accepted unifying theory
how does it work? Bias/variance decomposition (variance is
reduced), large margin classifiers (large margin → better
generalization)
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Classifier Team Design

motivation: induce diversity to the team

sampling from the training set (bagging, boosting)

partitioning the feature space (divide&conquer, mixture of
experts)

using different combinations of features (multiple feature
subset, attribute bagging)

multi-model approaches (e.g., k-NN, neural net, decision tree,
and SVM)

changing parameters of a model (3-NN, 5-NN, 10-NN; neural
net topology)

output coding (error correcting output coding)

hybrid methods (random forests)
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Classification Confidence

motivation: measure the degree of reliability of a prediction

static

global accuracy, precision, sensitivity, . . .

dynamic

local accuracy
local match
methods based on d.o.c.
statistical methods - transduction
model-specific methods
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Aggregation

classifier selection (static/dynamic classifier selection, mixture
of experts)

crisp classifiers - voting, behavior knowledge space

class ranking methods - Borda count

soft classifiers - artihmetic approaches (mean, median, min,
max), probabilistic approaches (product rule, Dempster-Shafer
theory), fuzzy logic (fuzzy integral, decision templates)

second level classifiers - stacking
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Dynamic Classifier Systems

framework of classifier combining with classification confidence

S = (T ,K,A) – classifier system

T = (φ1, . . . , φr ) – classifiers

K = (κφ1 , . . . , κφr ) – confidence measures

A – aggregator

3 types of classifier systems

confidence-free
static
dynamic
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Types of classifier systems
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Classifier Aggregation

prediction

T (~x) =


φ1(~x)
φ2(~x)

...
φr (~x)

 =


γ11(~x) γ12(~x) . . . γ1N(~x)
γ21(~x) γ22(~x) . . . γ2N(~x)

. . .

γr1(~x) γr2(~x) . . . γrN(~x)


γij(~x) = degree of classification to class Cj given by φi

confidence

K(~x) =


κφ1

(~x)
κφ2

(~x)
...

κφr (~x)


κφi (~x) = confidence of φi on ~x

usually, aggregate j-th column of T (~x) by an aggregation
operator, parametrized by K(~x)
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Information Fusion

(X1, . . . ,XN) – information sources (sensors, experts, etc.)

(a1, . . . , aN) ∈ DN– outputs in domain D, e.g. D = R
C : DN → D – aggregation operator

C(a1, . . . , aN) – aggregated value (consensus)

arithmetic mean, weighted mean, median, minimum,
maximum, . . .
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Desired Properties

unanimity
∀a : C(a, . . . , a) = a

monotonicity
∀i : ai ≥ a′i ⇒ C(a1, . . . , aN) ≥ C(a′1, . . . , a

′
N)

(unanimity) + (monotonicity) ⇒ internality
mini ai ≤ C(a1, . . . , aN) ≤ maxi ai

symmetry (no source is distingushable)
∀π ∈ Π1,...,N : C(a1, . . . , aN) = C(aπ(1), . . . , aπ(N))

robustness (influence of outliers) - arithmetic mean vs. median

applicability – numeric / ordinal / nominal domains
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Weighted Mean

WMp(a1, . . . , aN) =
∑

i piai

weighting vector: p = (p1, . . . , pN) ∈ [0, 1]N ,
∑

i pi = 1

pi – importance (reliability) of i-th source

properties

special case – arithmetic mean (pi = 1/N)
not symmetric
dictatorship of the i-th source (pi = 1, pj = 0 j 6= i)
unbounded influence of outliers
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Ordered Weighted Average (OWA)

OWAw (a1, . . . , aN) =
∑

i wia<i>

weighting vector w, (·) indicating nondecreasing permutation,
i.e. a<i> ≥ a<i−1>

wi – importance of i-th largest output

properties

can reduce (or ignore) extreme values, e.g.
w = (0, 1/3, 1/3, 1/3, 0) – commitee
special cases – minimum, maximum, median, arithmetic mean
symmetric
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Fuzzy Measure

µ : P(U)→ [0, 1] is called a fuzzy measure on U iff:
1 (boundary condition) µ(∅) = 0, µ(U) = 1
2 (monotonicity) A ⊆ B ⇒ µ(A) ≤ µ(B)

generalization of additive measures (probability)

can model interaction between the elements
example: 3 subjects (math, physics, literature); µ(∅) = 0, µ(M) = 0.45,

µ(P) = 0.45, µ(L) = 0.3, µ(M, L) = 0.9, µ(P, L) = 0.9, µ(M,P) = 0.5,

µ(M,P, L) = 1

classifier aggregation: aggregate the integrand (predictions of
the classifiers) with respect to the fuzzy measure (represents
the confidence)

no general definition of fuzzy integral; Choquet and Sugeno
used most often
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Choquet Integral

i support; A<i> d.o.c.-level; f<i> measure of support; µ(A<i>)
4 φ3 0.9 0.1
3 φ3, φ4 0.4 0.3
2 φ1, φ3, φ4 0.3 0.7
1 φ1, φ2, φ3, φ4 0.2 1
0 0

∫
C

f dµ =
r∑

i=1

(f<i> − f<i−1>)µ(A<i>)

= 0.5 · 0.1 + 0.1 · 0.3 + 0.1 · 0.7 + 0.2 · 1 = 0.35
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Choquet Integral ctnd

for additive measures, Choquet integral conincides with
Lebesgue integral

satisfies unanimity, monotonicity, internality (i.e., it is a
proper aggregation operator)

generalizes weighted mean, OWA, WOWA
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Sugeno Integral

i support; A<i> d.o.c.-level; f<i> measure of support; µ(A<i>)
4 φ3 0.9 0.1
3 φ3, φ4 0.4 0.3
2 φ1, φ3, φ4 0.3 0.7
1 φ1, φ2, φ3, φ4 0.2 1
0 0

(S)

∫
f dµ =

r
max
i=1

min(f<i>, µ(A<i>))

= max(0.1, 0.3, 0.3, 0.2) = 0.3
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Sugeno Integral ctnd

satisfies unanimity, monotonicity, internality (i.e., it is a
proper aggregation operator)

generalizes weighted minimum and maximum
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Weighted Mean
Ordered Weighted Average
Choquet Integral
Sugeno Integral

Aggregation Operators - summary
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Fuzzy Integral

aggregate the integrand w.r.t. fuzzy measure

integrand ∼ degrees of classification (d.o.c.) to Cj given by
φ1, . . . , φr

fuzzy measure ∼ confidences of the individual classifiers

integral ∼ aggregated d.o.c. to class Cj
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Fuzzy Measure

µ : P(X )→ [0, 1] is called a fuzzy measure on X iff:
1 (boundary condition) µ(∅) = 0, µ(X ) = 1
2 (monotonicity) A ⊆ B ⇒ µ(A) ≤ µ(B)

generalization of additive measures (probability)

can model interaction between the elements
example: 3 subjects (math, physics, literature); µ(∅) = 0, µ(M) = 0.45,

µ(P) = 0.45, µ(L) = 0.3, µ(M, L) = 0.9, µ(P, L) = 0.9, µ(M,P) = 0.5,

µ(M,P, L) = 1

hard to define (needs 2N − 2 parameters)

additive measures need only N − 1 parameters (for the
singletons) - fuzzy densities µ(φi )
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Common Fuzzy Measures

additive: µ(A ∪ B) = µ(A) + µ(B) for disjoint A,B

correspond to probabilistic measures

symmetric: |A| = |B| ⇒ µ(A) = µ(B)

µ(A) depends only on the number of elements in A
leads to confidence-free aggregation

⊥-decomposable: µ(A ∪ B) = µ(A) ⊥ µ(B) for disjoint A,B

special case: Sugeno λ-measure (used most often in classifier
aggregation using FI); µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B)
µ(A ∪ B) fully determined by µ(A), µ(B),⊥

neither of these can model interactions between the classifiers
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Interaction-Sensitive Fuzzy Measures

motivation: model the confidence of a set of classifiers, but
take mutual classifier similarities (∼ interactions) into account

similar classifiers: small increase in the measure

different classifiers: big increase in the measure

diversity of the classifier team is taken into account in the
aggregation process (not processed a priori)

not limited to classifier aggregation only
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Induced Interaction-Sensitive Fuzzy Measure (I-ISFM)

at each step, classifier φ<i> is added to a set of classifiers
(φ<i+1>), . . . , φ<r>)

increase of the measure is controlled by the similarity

µ(∅) = 0

µ(A<r>) = µ({φ<r>}) = κ<r>

µ(A<i>) = µ({φ<i>, . . . , φ<r>}) =

= µ(A<i+1>) + [1− r
max
k=i+1

S(φ<i>, φ<k>)]κ<i>

for i = r − 1, . . . , 1,

I-ISFM: µ normalized to [0, 1]

theoretical weakness: tightly connected to the ordering < · >
induced by f
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Global Interaction-Sensitive Fuzzy Measure (G-ISFM)

fuzzy measure on the whole universe; regardless of the
integrand

take the classifier confidences and transform them into new
fuzzy densities

µ(φk) = κk  µ̃(φk)

classifiers are sorted w.r.t. confidences [·]
with decreasing confidence, the similarity to elements with
higher confidence is taken into account

µ̃(φ[k]) = κ[k](1− r
max
j=k+1

s[k],[j]), k = 1, . . . , r

use µ̃(φ[k]) to build an additive measure
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Modified Hüllermeier Measure (MHM)

Cho-k-NN: use similarities of neighbors in k-NN classifier

base measure ν (e.g., additive, based on the confidences)
use diversity of a set of classifiers to adjust the base measure

div(A) =
2

|A|2 − |A|
∑

ui ,uj∈A;j<i

(1− si,j) ∈ [0, 1]

rdiv(A) =
2div(A)

max(1− si,j)
− 1 ∈ [−1, 1]

µh(A) = ν(A)(1 + αrdiv(A)), α ≥ 0

not necessarilly monotone
enforce monotonicity using µh(A) = maxB⊆A µh(B) is
practically impossible
use the idea from I-ISFM: compute µh only for the r values
actually needed for the integration, i.e., sets A<i>
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Example - similar classifiers

T∗,j(~x) = [0.5, 0.4, 0.8]T

K(~x) = [0.3, 0.4, 0.6]T

(si,j) =

 1 0.9 0.2
0.9 1 0.2
0.2 0.2 1


i support d.o.c.-level µ(A<i>)

A<i> f<i> additive Sugeno λ I-ISFM G-ISFM MHM

3 φ3 0.8 0.462 0.6 0.682 0.632 0.325
2 φ1, φ3 0.5 0.693 0.791 0.955 0.663 0.977
1 φ1, φ2, φ3 0.4 1 1 1 1 1

David Štefka Classifier Aggr. using Interaction-Sensitive Fuzzy Measures



Dynamic Classifier Systems
Aggregation Operators

Interaction-Sensitive Fuzzy Measures
Experiments

I-ISFM
G-ISFM
MHM

Example - similar classifiers

3 2 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

µ
(A

<
i>

)

 

 

Additive

Sugeno λ

I−ISFM

G−ISFM

MHM

Similar classifiers

T∗,j(~x) = [0.5, 0.4, 0.8]T

K(~x) = [0.3, 0.4, 0.6]T

(si,j) =

 1 0.9 0.2
0.9 1 0.2
0.2 0.2 1


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Example - dissimilar classifiers

T∗,j(~x) = [0.5, 0.4, 0.8]T

K(~x) = [0.3, 0.4, 0.6]T

(si,j) =

 1 0.3 0.2
0.3 1 0.2
0.2 0.2 1


i support d.o.c.-level µ(A<i>)

A<i> f<i> additive Sugeno λ I-ISFM G-ISFM MHM

3 φ3 0.8 0.462 0.6 0.536 0.531 0.240
2 φ1, φ3 0.5 0.693 0.791 0.75 0.814 0.722
1 φ1, φ2, φ3 0.4 1 1 1 1 1
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Example - dissimilar classifiers

3 2 1
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Dissimilar classifiers

T∗,j(~x) = [0.5, 0.4, 0.8]T

K(~x) = [0.3, 0.4, 0.6]T

(si,j) =

 1 0.3 0.2
0.3 1 0.2
0.2 0.2 1


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Experiments

compare non-interaction sensitive measures (additive, Sugeno
λ-measure) to ISFM (I-ISFM, G-ISFM, MHM)

3 different classifier systems (Random Forest, k-NN ensemble,
QDC ensemble)

23 datasets

Choquet/Sugeno integral with Sugeno λ-measure and ISFM

reference: single best, weighted mean (∼ additive measure)
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Experimental results

Number of datasets (out of 69), for which the aggregator obtained
the best results among all aggregators.
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Experimental results

↓ superior to → SB WMean CI SI all
(out of 69) λ I-ISFM G-ISFM MHM λ I-ISFM G-ISFM MHM

SB - 32 (4) 19 (1) 9 9 11 18 (3) 9 12 12 (1) 3
WMean 37 (16) - 15 (2) 5 15 7 18 (2) 7 22 (2) 10 (1) 2

CI-λ 50 (18) 54 (6) - 9 20 13 41 13 28 (1) 15 (1) 4
CI-I-ISFM 60 (23) 64 (19) 60 (7) - 45 (2) 38 57 (7) 45 (1) 49 (7) 47 (1) 18
CI-G-ISFM 61 (24) 54 (18) 49 (7) 24 - 28 (1) 53 (10) 32 (1) 48 36 (2) 7
CI-MHM 58 (24) 62 (17) 56 (7) 31 43 (2) - 57 (7) 42 (1) 48 (6) 41 (1) 13

SI-λ 51 (17) 51 (6) 30 12 16 12 - 13 28 (1) 18 (1) 3
SI-I-ISFM 61 (24) 62 (17) 56 (6) 27 39 (2) 28 56 (8) - 48 (4) 39 (1) 6
SI-G-ISFM 58 (23) 47 (14) 41 (5) 20 21 21 41 (7) 23 (1) - 27 7
SI-MHM 58 (23) 59 (13) 54 (6) 22 33 (2) 28 51 (8) 30 (1) 43 (4) - 6

Number of datasets (out of 69), on which aggregator i obtained
better results than aggregator j, including significant improvements
in parentheses.
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Experimental results

ISFMs generally outperform traditional fuzzy measures (often
significantly)

CI obtained better results than SI

I-ISFM and MHM slightly superior to G-ISFM

David Štefka Classifier Aggr. using Interaction-Sensitive Fuzzy Measures



Dynamic Classifier Systems
Aggregation Operators

Interaction-Sensitive Fuzzy Measures
Experiments

Conclusions

dynamic classifier systems aggregated using fuzzy integral

traditional fuzzy measures (additive, symmetric,
⊥-decomposable) do not take classifier similarities into
account

ISFM: use classifier similarities in the fuzzy measure to further
improve the fuzzy integral-based aggregation

three novel fuzzy measures: I-ISFM, G-ISFM, MHM

diversity is processed directly in the aggregation

fast evaluation

not limited to classifier aggregation only

experimental results: ISFMs outperform traditional fuzzy
measures
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Thank you for your attention

David Štefka
stefka@insophy.cz

Classifier Aggregation
using Fuzzy Integral based on
Interaction-Sensitive Fuzzy Measures
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