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Stable classifier
The classifier is robust to even very noisy inputs

I 2000 random perturbations
I Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
I Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification

...so what happened here?!?!
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Adversarial attacks1

A small modification to an input which causes a classifier to confidently
misclassify it

susceptible

robust

1Szegedy et al. (ICLR 2014) ’Intriguing properties of neural networks’
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Aeorplane vs Cat see: [S. et al. (2023) arXiv:2309.03665]
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Other benchmarks see [S. et al. (2023) arXiv:2309.03665] for details

CIFAR-10 Fashion MNIST GTSRB
Accuracy 99.70, 95.80 99.51, 99.4 98.32, 98.51

Adversarial attack susceptibility 91.88, 89.96 53.58, 53.01 77.53, 77.00
Random attack susceptibility (δ = 2) 0.02, 0.17 0.07, 0.09 0.36, 0.36
Random attack susceptibility (δ = 5) 2.65, 2.57 10.71, 13.35 5.76, 5.1

Input dimension 32× 32× 3 28× 28× 1 30× 30× 3
Number of classes 10 10 6

I CNNs trained for each binary classification problem in
each benchmark

I Reporting are medians over all problems (train, test)

I Adversarial attack susceptibility: fraction of correctly
classified images susceptible to an adversarial attack

I Random attack susceptibility: fraction of adversarially
susceptible images which were misclassified after any of
2000 random perturbations sampled uniformly from a
ball with radius δ times larger than the smallest
adversarial attack found on that image

a

δa
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Paradox of apparent stability

Seemingly stable classifier (probabilistic stability)

Even large random noise is unlikely to cause an input to be misclassified

Susceptible to adversarial attacks (deterministic instability)

A small modification can be made to most inputs which causes a classifier to
confidently misclassify them

Probabilistic stability does not prevent deterministic instability!
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Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen 1 Elan Rosenfeld 1 J. Zico Kolter 1 2

Abstract

We show how to turn any classifier that classifies
well under Gaussian noise into a new classifier
that is certifiably robust to adversarial perturba-
tions under the `2 norm. While this “randomized
smoothing” technique has been proposed before
in the literature, we are the first to provide a tight
analysis, which establishes a close connection
between `2 robustness and Gaussian noise. We
use the technique to train an ImageNet classifier
with e.g. a certified top-1 accuracy of 49% un-
der adversarial perturbations with `2 norm less
than 0.5 (=127/255). Smoothing is the only ap-
proach to certifiably robust classification which
has been shown feasible on full-resolution Im-
ageNet. On smaller-scale datasets where com-
peting approaches to certified `2 robustness are
viable, smoothing delivers higher certified accura-
cies. The empirical success of the approach sug-
gests that provable methods based on randomiza-
tion at prediction time are a promising direction
for future research into adversarially robust classi-
fication. Code and models are available at http:
//github.com/locuslab/smoothing.

1. Introduction
Modern image classifiers achieve high accuracy on i.i.d.
test sets but are not robust to small, adversarially-chosen
perturbations of their inputs (Szegedy et al., 2014; Biggio
et al., 2013). Given an image x correctly classified by, say,
a neural network, an adversary can usually engineer an ad-
versarial perturbation � so small that x + � looks just like
x to the human eye, yet the network classifies x + � as a
different, incorrect class. Many works have proposed heuris-
tic methods for training classifiers intended to be robust to
adversarial perturbations. However, most of these heuristics
have been subsequently shown to fail against suitably pow-

1Carnegie Mellon University 2Bosch Center for AI. Correspon-
dence to: Jeremy Cohen <jeremycohen@cmu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
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Figure 1. Evaluating the smoothed classifier at an input x. Left:
the decision regions of the base classifier f are drawn in differ-
ent colors. The dotted lines are the level sets of the distribution
N (x, �2I). Right: the distribution f(N (x, �2I)). As discussed
below, pA is a lower bound on the probability of the top class and
pB is an upper bound on the probability of each other class. Here,
g(x) is “blue.”

.

erful adversaries (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). In response, a line of work on
certifiable robustness studies classifiers whose prediction at
any point x is verifiably constant within some set around x
(e.g. Wong & Kolter, 2018; Raghunathan et al., 2018a). In
most of these works, the robust classifier takes the form of a
neural network. Unfortunately, all existing approaches for
certifying the robustness of neural networks have trouble
scaling to networks that are large and expressive enough to
solve problems like ImageNet.

One workaround is to look for robust classifiers that are not
neural networks. In this paper, we analyze an operation we
call randomized smoothing1 which transforms any arbitrary
base classifier f into a new “smoothed classifier” g that is
certifiably robust in `2 norm. Let f be an arbitrary classifier
which maps inputs Rd to classes Y . For any input x, the
smoothed classifier’s prediction g(x) is defined to be the
class which f is most likely to classify the random vari-
able N (x, �2I) as. That is, g(x) returns the most probable
prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x, �2I)
as x’s correct class, then the smoothed classifier g will be

1We adopt this term because it has been used to describe as
similar technique in a different context (Duchi et al., 2012).

(PMLR 2019)
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Abstract

The existence of adversarial data examples has drawn significant attention in the
deep-learning community; such data are seemingly minimally perturbed relative to
the original data, but lead to very different outputs from a deep-learning algorithm.
Although a significant body of work on developing defensive models has been
considered, most such models are heuristic and are often vulnerable to adaptive
attacks. Defensive methods that provide theoretical robustness guarantees have
been studied intensively, yet most fail to obtain non-trivial robustness when a
large-scale model and data are present. To address these limitations, we introduce
a framework that is scalable and provides certified bounds on the norm of the input
manipulation for constructing adversarial examples. We establish a connection
between robustness against adversarial perturbation and additive random noise, and
propose a training strategy that can significantly improve the certified bounds. Our
evaluation on MNIST, CIFAR-10 and ImageNet suggests that the proposed method
is scalable to complicated models and large data sets, while providing competitive
robustness to state-of-the-art provable defense methods.

1 Introduction

Although deep neural networks have achieved significant success on a variety of challenging machine
learning tasks, including state-of-the-art accuracy on large-scale image classification [1, 2], the
discovery of adversarial examples [3] has drawn attention and raised concerns. Adversarial examples
are carefully perturbed versions of the original data that successfully fool a classifier. In the image
domain, for example, adversarial examples are images that have no visual difference from natural
images, but that lead to different classification results [4].

A large body of work has been developed on defensive methods to tackle adversarial examples, yet
most remain vulnerable to adaptive attacks [3–10]. A major drawback of many defensive models is
that they are heuristic and fail to obtain a theoretically justified guarantee of robustness. On the other
hand, many works have focused on providing provable/certified robustness of deep neural networks
[11–17].

Recently, [18] provided theoretical insight on certified robust prediction, building a connection
between differential privacy and model robustness. It was shown that adding properly chosen noise
to the classifier will lead to certified robust prediction. Building on ideas in [18], we conduct an
analysis of model robustness based on Rényi divergence [19] between the outputs of models for

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Abstract

Recent years have witnessed a surge of certified robust training pipelines against
text adversarial perturbation constructed by synonym substitutions. Given a base
model, existing pipelines provide prediction certificates either in the discrete word
space or the continuous latent space. However, they are isolated from each other
with a structural gap. We observe that existing training frameworks need unifica-
tion to provide stronger certified robustness. Additionally, they mainly focus on
building the certification process but neglect to improve the robustness of the base
model. To mitigate the aforementioned limitations, we propose a unified framework
named UniT that enables us to train flexibly in either fashion by working in the
word embedding space. It can provide a stronger robustness guarantee obtained
directly from the word embedding space without extra modules. In addition, we
introduce the decoupled regularization (DR) loss to improve the robustness of the
base model, which includes two separate robustness regularization terms for the
feature extraction and classifier modules. Experimental results on widely used text
classification datasets further demonstrate the effectiveness of the designed unified
framework and the proposed DR loss for improving the certified robust accuracy.†

1 Introduction

Despite the tremendous performance of deep neural networks (DNNs) in natural language process-
ing (NLP) tasks, their robustness has been doubted due to their vulnerability against adversarial
attacks [15]. Particularly, a type of word-level adversarial perturbation named synonym substitution
can generate adversarial examples with high semantic similarity even in the hard-label setting with
limited information [14, 26]. Accordingly, recent years have seen an urge for robust NLP models
that can provide certified robust predictions [23, 25, 31] for this type of attack. A prediction for a
text sample is certified if the hard-label prediction is correct and remains unchanged when the input
is changed to any text sample constructed from the synonym substitution. The key to producing
certified predictions is certified robust training, which introduces perturbation during training to ask
the model to adapt to it and enables it to still perform well in the inference stage under perturbation.

Due to the large scale of NLP models nowadays, certification methods adopted for text data are
usually probabilistic ones. In this context, given a base model that outputs a single prediction, a
smoothed model is built on it in the inference stage with randomized mechanisms, whose outputs
are used to decide whether predictions are certified. Thus, two aspects are essential for generating
certified predictions: the robustness of the base model and the certification of the smoothed model.

⇤Corresponding author.
†The implementation code is available at https://github.com/machinelearning4health/

UniT.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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erful adversaries (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). In response, a line of work on
certifiable robustness studies classifiers whose prediction at
any point x is verifiably constant within some set around x
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Recent years have witnessed a surge of certified robust training pipelines against
text adversarial perturbation constructed by synonym substitutions. Given a base
model, existing pipelines provide prediction certificates either in the discrete word
space or the continuous latent space. However, they are isolated from each other
with a structural gap. We observe that existing training frameworks need unifica-
tion to provide stronger certified robustness. Additionally, they mainly focus on
building the certification process but neglect to improve the robustness of the base
model. To mitigate the aforementioned limitations, we propose a unified framework
named UniT that enables us to train flexibly in either fashion by working in the
word embedding space. It can provide a stronger robustness guarantee obtained
directly from the word embedding space without extra modules. In addition, we
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base model, which includes two separate robustness regularization terms for the
feature extraction and classifier modules. Experimental results on widely used text
classification datasets further demonstrate the effectiveness of the designed unified
framework and the proposed DR loss for improving the certified robust accuracy.†

1 Introduction

Despite the tremendous performance of deep neural networks (DNNs) in natural language process-
ing (NLP) tasks, their robustness has been doubted due to their vulnerability against adversarial
attacks [15]. Particularly, a type of word-level adversarial perturbation named synonym substitution
can generate adversarial examples with high semantic similarity even in the hard-label setting with
limited information [14, 26]. Accordingly, recent years have seen an urge for robust NLP models
that can provide certified robust predictions [23, 25, 31] for this type of attack. A prediction for a
text sample is certified if the hard-label prediction is correct and remains unchanged when the input
is changed to any text sample constructed from the synonym substitution. The key to producing
certified predictions is certified robust training, which introduces perturbation during training to ask
the model to adapt to it and enables it to still perform well in the inference stage under perturbation.

Due to the large scale of NLP models nowadays, certification methods adopted for text data are
usually probabilistic ones. In this context, given a base model that outputs a single prediction, a
smoothed model is built on it in the inference stage with randomized mechanisms, whose outputs
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⇤Corresponding author.
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erful adversaries (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). In response, a line of work on
certifiable robustness studies classifiers whose prediction at
any point x is verifiably constant within some set around x
(e.g. Wong & Kolter, 2018; Raghunathan et al., 2018a). In
most of these works, the robust classifier takes the form of a
neural network. Unfortunately, all existing approaches for
certifying the robustness of neural networks have trouble
scaling to networks that are large and expressive enough to
solve problems like ImageNet.

One workaround is to look for robust classifiers that are not
neural networks. In this paper, we analyze an operation we
call randomized smoothing1 which transforms any arbitrary
base classifier f into a new “smoothed classifier” g that is
certifiably robust in `2 norm. Let f be an arbitrary classifier
which maps inputs Rd to classes Y . For any input x, the
smoothed classifier’s prediction g(x) is defined to be the
class which f is most likely to classify the random vari-
able N (x, �2I) as. That is, g(x) returns the most probable
prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x, �2I)
as x’s correct class, then the smoothed classifier g will be

1We adopt this term because it has been used to describe as
similar technique in a different context (Duchi et al., 2012).

(PMLR 2019)
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Abstract

The existence of adversarial data examples has drawn significant attention in the
deep-learning community; such data are seemingly minimally perturbed relative to
the original data, but lead to very different outputs from a deep-learning algorithm.
Although a significant body of work on developing defensive models has been
considered, most such models are heuristic and are often vulnerable to adaptive
attacks. Defensive methods that provide theoretical robustness guarantees have
been studied intensively, yet most fail to obtain non-trivial robustness when a
large-scale model and data are present. To address these limitations, we introduce
a framework that is scalable and provides certified bounds on the norm of the input
manipulation for constructing adversarial examples. We establish a connection
between robustness against adversarial perturbation and additive random noise, and
propose a training strategy that can significantly improve the certified bounds. Our
evaluation on MNIST, CIFAR-10 and ImageNet suggests that the proposed method
is scalable to complicated models and large data sets, while providing competitive
robustness to state-of-the-art provable defense methods.

1 Introduction

Although deep neural networks have achieved significant success on a variety of challenging machine
learning tasks, including state-of-the-art accuracy on large-scale image classification [1, 2], the
discovery of adversarial examples [3] has drawn attention and raised concerns. Adversarial examples
are carefully perturbed versions of the original data that successfully fool a classifier. In the image
domain, for example, adversarial examples are images that have no visual difference from natural
images, but that lead to different classification results [4].

A large body of work has been developed on defensive methods to tackle adversarial examples, yet
most remain vulnerable to adaptive attacks [3–10]. A major drawback of many defensive models is
that they are heuristic and fail to obtain a theoretically justified guarantee of robustness. On the other
hand, many works have focused on providing provable/certified robustness of deep neural networks
[11–17].

Recently, [18] provided theoretical insight on certified robust prediction, building a connection
between differential privacy and model robustness. It was shown that adding properly chosen noise
to the classifier will lead to certified robust prediction. Building on ideas in [18], we conduct an
analysis of model robustness based on Rényi divergence [19] between the outputs of models for
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Abstract

Recent years have witnessed a surge of certified robust training pipelines against
text adversarial perturbation constructed by synonym substitutions. Given a base
model, existing pipelines provide prediction certificates either in the discrete word
space or the continuous latent space. However, they are isolated from each other
with a structural gap. We observe that existing training frameworks need unifica-
tion to provide stronger certified robustness. Additionally, they mainly focus on
building the certification process but neglect to improve the robustness of the base
model. To mitigate the aforementioned limitations, we propose a unified framework
named UniT that enables us to train flexibly in either fashion by working in the
word embedding space. It can provide a stronger robustness guarantee obtained
directly from the word embedding space without extra modules. In addition, we
introduce the decoupled regularization (DR) loss to improve the robustness of the
base model, which includes two separate robustness regularization terms for the
feature extraction and classifier modules. Experimental results on widely used text
classification datasets further demonstrate the effectiveness of the designed unified
framework and the proposed DR loss for improving the certified robust accuracy.†

1 Introduction

Despite the tremendous performance of deep neural networks (DNNs) in natural language process-
ing (NLP) tasks, their robustness has been doubted due to their vulnerability against adversarial
attacks [15]. Particularly, a type of word-level adversarial perturbation named synonym substitution
can generate adversarial examples with high semantic similarity even in the hard-label setting with
limited information [14, 26]. Accordingly, recent years have seen an urge for robust NLP models
that can provide certified robust predictions [23, 25, 31] for this type of attack. A prediction for a
text sample is certified if the hard-label prediction is correct and remains unchanged when the input
is changed to any text sample constructed from the synonym substitution. The key to producing
certified predictions is certified robust training, which introduces perturbation during training to ask
the model to adapt to it and enables it to still perform well in the inference stage under perturbation.

Due to the large scale of NLP models nowadays, certification methods adopted for text data are
usually probabilistic ones. In this context, given a base model that outputs a single prediction, a
smoothed model is built on it in the inference stage with randomized mechanisms, whose outputs
are used to decide whether predictions are certified. Thus, two aspects are essential for generating
certified predictions: the robustness of the base model and the certification of the smoothed model.

⇤Corresponding author.
†The implementation code is available at https://github.com/machinelearning4health/

UniT.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Characterising high dimensional spaces
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Characterising high dimensional spaces

MNIST: 784 dimensions

CIFAR-10: 3,072 dimensions

Llama-2: 4,096 dimensions

GPT3-Davinci: 12,288 dimensions

ImageNet: 196,608 dimensions
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Characterising high dimensional spaces
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Characterising high dimensional spaces

Concentration of measure2

I Let x be sampled uniformly from the unit ball in Rd . Then, for 0 ≤ r ≤ 1

P(‖x‖ > r) ≥ 1− rd

Quasi-orthogonality3

I In high dimensional spaces, randomly sampled points are typically nearly
orthogonal

I For any ε > 0 the number of points xi ∈ Sd−1 ⊂ Rd such that |(xi , xj)| ≤ ε
for all i 6= j grows exponentially with d

I For points x , y sampled independently and uniformly on the sphere in Rd ,

P(|(x , y)| < ε) ≥ 1− exp
(
− dε2

2

)
See notes: Ball (1997) ‘An elementary introduction to modern convex geometry’ for an

introduction to high dimensional geometry

2Ledoux (2001), Ball (1997), . . .
3Kainen and Kůrková (1993), Gorban, Tyukin, Prokhorov, Sofeikov (2016), . . .
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Explaining the paradox [S. et al. (2023) arXiv:2309.03665]

definite
catdefinite

aeroplane

definite
aeroplane

definite
cat

Paradox of apparent stability
I Even large random noise is unlikely to cause an input to be misclassified

I Most inputs can be misclassified by adding a small computed attack
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Explaining the paradox [S. et al. (2023) arXiv:2309.03665]

a

δa I adversarial attack walks straight to decision boundary

I adding random noise samples another point in this ball

I misclassified points are those from a spherical cap

I relative volume of a spherical cap is small in high
dimensions

Theorem (Random noise is a bad way to detect adversarial attacks)

Let f : Rd → {0, 1} be a linear classifier, let x ∈ Rd with f (x) = 0, and let

a = inf
v∈Rd such that f (x+v)=1

‖v‖.

Then, for any δ > 1,

P(s ∼ U(Bd
δa) : f (x + s) 6= f (x)) ≤ 1

2

(
1− 1

δ2

) d
2

.
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Building up the model [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Data sampled in dimension d

I Balls B0 and B1, unit radius, centres 2ε apart

I Points of class 0 sampled from distribution D0

supported in B0

I Points of class 1 sampled from distribution D1

supported in B1

I Distributions D0 and D1 don’t have pathological
accumulation points
I they have densities p0 and p1 which are bounded4:

there exists A ≥ 1 such that

pi (x) ≤ A

V d(Bi )
for all x ∈ Bi

I Combined distribution Dε samples labelled point
(x , `) ∈ Rd × {0, 1}; each label has probability 1

2

I f is the optimal (balanced) classifier for this
4A simplified version of the Smeard Absolute Continuity (SmAC) condition: [Gorban et al.

(2018) Information Sciences]
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Building up the model [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label has
probability 1

2
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label
has probability 1

2

Theorem (The classifier is accurate)

For any ε > 0, the probability that the classifier applies the correct label to a
randomly sampled data point grows exponentially to 1 with dimension n,
specifically

P((x , `) ∼ Dε : f (x) = `) ≥ 1− 1

2
A(1− ε2)

d
2 .
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]
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Theorem (The classifier is accurate)

For any ε > 0, the probability that the classifier applies the correct label to a
randomly sampled data point grows exponentially to 1 with dimension n,
specifically

P((x , `) ∼ Dε : f (x) = `) ≥ 1− 1

2
A(1− ε2)

d
2 .
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label
has probability 1

2

Theorem (Destabilising perturbations are rare)

For any fixed δ > ε ≥ 0, the probability that a randomly selected perturbation
with Euclidean norm δ causes a randomly sampled data point to be misclassified
converges exponentially to 0 with the dimension d, specifically

P
(
(x , `) ∼ Dε, s ∼ U(Bd

δ) : f (x + s) 6= `
)
≤ A

(
1−

( ε

1 + δ

)2) d
2

.
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label
has probability 1

2

Theorem (Susceptible data points are typical)

For any ε ≥ 0 and δ ∈ [ε, 1 + ε], the probability that a randomly sampled data
point is susceptible to an adversarial attack with Euclidean norm δ grows
exponentially to 1 with the dimension d, specifically

P
(
(x , `) ∼ Dε : there exists s ∈ Bd

δ such that f (x + s) 6= `
)

≥ 1− 1

2
A(1− (δ − ε)2)

d
2 .
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label
has probability 1

2

Theorem (Gradient-based methods find the optimal adversarial attack)

Let L : R>0 → R denote any differentiable, monotonically increasing loss function,
and let (x , `) ∼ Dε. Then, with probability 1 with respect to the sample (x , `),
the gradient of the loss L(|f̃ (x)− `|) with respect to the components of x
corresponds to a positive multiple of the optimal attack direction.
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

1

1

εε

decision surface of f

I Class i sampled from distribution Di in Bi ⊂ Rd

I Centre distance: 2ε

I Bounded densities: A ∈ R s.t. pi (x) ≤ A
V d (Bi )

I Combined distribution Dε samples (x , `); each label
has probability 1

2

Let d`(x) measure how far x is on the wrong side of the decision boundary for class `.

Theorem (Adversarial attacks are universal)

Let ε ≥ 0 and suppose that x , z ∼ D` are independently sampled with the same
label `. For any γ ∈ (0, 1], the probability that x is destabilised by all
perturbations s ∈ Rd which destabilise z with margin d`(z + s) > γ converges
exponentially to 1 with d. Specifically, let Sz = {s ∈ Rd : d`(z + s) > γ}. Then,

P(x , z ∼ D` : f (x + s) 6= ` for all s ∈ Sz) ≥
(

1− A
(

1− γ2

4

) d
2
)2
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The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

In summary, in high dimensions:

I The classifier is accurate

I Destabilising random perturbations are rare

I Typical data points sampled from either class are susceptible to small
adversarial attacks which can be easily constructed and which universally
affect most points from the same class

Extensions discussed in the paper:

I General data distributions

I Non-flat decision surfaces

I Multi-class setting
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Coda: Classification with no margin
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Can we certify models are free from adversarial attacks?

NN : networks with input dimension d , first hidden layer has 2d neurons, L ≥ 2 layers,
ReLU activations inside, step function for binary classification on output.

F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

Oliver Sutton (oliver.sutton@kcl.ac.uk) Adversarial robustness Charles University, Prague, March 2024 22 / 23



Can we certify models are free from adversarial attacks?

NN : networks with input dimension d , first hidden layer has 2d neurons, L ≥ 2 layers,
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F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

1 There exists a network which correctly classifies the training data T and the test
data V, satisfying

f ∈ arg min
ϕ∈NN

∑
(x,`)∈T ∪V

L(x , `; f )
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F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

1 There exists a network which correctly classifies the training data T and the test
data V, satisfying

f ∈ arg min
ϕ∈NN

∑
(x,`)∈T ∪V

L(x , `; f )

2 Yet, for any q ∈ (0, 1/2), with probability greater than or equal to 1− exp(−2q2M)
there exists a multi-set U ⊂ T ∪ V of cardinality at least b(1/2− q)Mc on which f
is unstable in the sense that for any (x , `) ∈ U and any α ∈ (0, ε/2), there exists a
perturbation ζ ∈ Rn with ‖ζ‖ ≤ α/√n and

|f (x)− f (x + ζ)| = 1.
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L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

3 Moreover, such destabilising perturbations are typical in the sense that if vectors ζ
are sampled from the equidistribution in Bn(α/

√
n, 0), then for (x , `) ∈ U

|f (x)− f (x + ζ)| = 1 with probability at least 1− 1

2n
.
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Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

3 Moreover, such destabilising perturbations are typical in the sense that if vectors ζ
are sampled from the equidistribution in Bn(α/

√
n, 0), then for (x , `) ∈ U

|f (x)− f (x + ζ)| = 1 with probability at least 1− 1

2n
.

4 Furthermore, there exist universal destabilising perturbations, in the sense that a
single perturbation ζ drawn from the equidistribution in Bn(α/

√
n, 0) destabilises

m ≤ |U| points from the set U with probability at least

1− m

2n
.
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Can we certify models are free from adversarial attacks?

NN : networks with input dimension d , first hidden layer has 2d neurons, L ≥ 2 layers,
ReLU activations inside, step function for binary classification on output.

F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

5 For the same distribution Dδ there is a robust network with the same
architecture as f , satisfying

f̃ ∈ arg min
ϕ∈NNN,L

L(T ∪ V, ϕ)

with L(T ∪ V, f̃ ) = 0, which is robust in the sense that for all (x , `) ∈ T ∪ V

f̃ (x) = f̃ (x + ζ)

for any ζ ∈ Rn with ‖ζ‖ ≤ α/√n, even when |T ∪ V| =∞.
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Can we certify models are free from adversarial attacks?

NN : networks with input dimension d , first hidden layer has 2d neurons, L ≥ 2 layers,
ReLU activations inside, step function for binary classification on output.

F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

6 Moreover, there exist pairs of unstable and robust networks, fλ, f̃λ and fΛ, f̃Λ,
satisfying the statements above such that the maximum absolute difference
between their weights and biases is either arbitrarily small or arbitrarily large. That
is, for any λ > 0,Λ > 0:

‖Θ(fλ)−Θ(f̃λ)‖∞ < λ, ‖Θ(fΛ)−Θ(f̃Λ)‖∞ > Λ.
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L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

7 However, for the above robust solution f̃ ,

a) there exists an uncountably large family of distributions D̃δ ∈ F on which f̃
correctly classifies both the training and test data, yet fails in the same way

b) there exists an uncountably large family of distributions D̂δ ∈ F such that the
map f̃ is robust on T ∪ V (with respect to perturbations ζ with ‖ζ‖ ≤ α/√n,
α ∈ (0, ε/2)) with probability (

1− 1

2n+1

)Mk

but is unstable to arbitrarily small perturbations on future samples with
probability k/2n+1.
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Can we certify models are free from adversarial attacks?

NN : networks with input dimension d , first hidden layer has 2d neurons, L ≥ 2 layers,
ReLU activations inside, step function for binary classification on output.

F : family of 2-class data distributions, margin at least δ > 0 between opposite classes.
L: loss function T : training data V: test data M = |T ∪ V|

Theorem (Inevitability, typicality and undetectability of instability)

Let ε ∈ (0,
√
d − 1) and fix 0 < δ ≤ ε/

√
d. Then, there is an uncountably large family of

distributions Dδ ∈ F such that for any Dδ ∈ F , any training and validation data T , V
drawn independently from Dδ:

1. A network perfectly classifies the data, and minimises the loss

2. The training/test points are susceptible to small adversarial attacks

3. Nearly half the training/test points are susceptible to small adversarial attacks
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Conclusions

I Stability to random perturbations is not the same as stability to adversarial
perturbations!

I In high dimensions, the two are very different

Oliver Sutton (oliver.sutton@kcl.ac.uk) Adversarial robustness Charles University, Prague, March 2024 23 / 23



Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some
unprocessed data that should have been added to the final page this extra page
has been added to receive it.
If you rerun the document (without altering it) this surplus page will go away,
because LATEX now knows how many pages to expect for this document.


