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Stable classifier
The classifier is robust to even very noisy inputs

» 2000 random perturbations

» Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
» Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification
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Stable classifier
The classifier is robust to even very noisy inputs

» 2000 random perturbations

» Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
» Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification

...s0 what happened here?!7!
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A small modification to an input which causes a classifier to confidently
misclassify it
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Adversarial attacks!

A small modification to an input which causes a classifier to confidently
misclassify it
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Aeorplane vs Cat see: [S. et al. (2023) arXiv:2309.03665]

Misclassified after adversarial attack

Misclassified after any of 2000 random noise
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Other benchmarks see [s. et al. (2023) arXiv:2309.03665] for details

CIFAR-10 | Fashion MNIST | GTSRB

Accuracy 99.70, 95.80 99.51, 99.4 98.32, 98.51
Adversarial attack susceptibility 01.88, 89.96 53.58, 53.01 77.53, 77.00
Random attack susceptibility (6 = 2) 0.02, 0.17 0.07, 0.09 0.36, 0.36
Random attack susceptibility (6 =5) | 2.65, 2.57 10.71, 13.35 5.76, 5.1
Input dimension 32x32x3 28 x 28 x 1 30 x 30 x 3
Number of classes 10 10 6
» CNNs trained for each binary classification problem in \

each benchmark
» Reporting are medians over all problems (train, test) d5a

» Adversarial attack susceptibility: fraction of correctly
classified images susceptible to an adversarial attack

» Random attack susceptibility: fraction of adversarially
susceptible images which were misclassified after any of
2000 random perturbations sampled uniformly from a
ball with radius ¢ times larger than the smallest
adversarial attack found on that image k
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Violin plots showing the distribution across the
training and test sets of the £* norms of the smallest
misclassifying random perturbation on individual images.
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Violin plots showing the distribution across the training and test sets of the norms of (1) smallest
successful adversarial attacks, and (2) smallest misclassifying random perturbation on individual images.
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Even large random noise is unlikely to cause an input to be misclassified

A small modification can be made to most inputs which causes a classifier to
confidently misclassify them




Even large random noise is unlikely to cause an input to be misclassified |

A small modification can be made to most inputs which causes a classifier to
confidently misclassify them

Probabilistic stability does not prevent deterministic instability!



Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen' Elan Rosenfeld' J. Zico Kolter ! 2

(PMLR 2019)
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MNIST: 784 dimensions
CIFAR-10: 3,072 dimensions
Llama-2: 4,096 dimensions
GPT3-Davinci: 12,288 dimensions
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Concentration of measure?
» Let x be sampled uniformly from the unit ball in RY. Then, for 0 < r <1

P(|x|| >r)>1~-r9

2Ledoux (2001), Ball (1997), ...
3Kainen and Karkova (1993), Gorban, Tyukin, Prokhorov, Sofeikov (2016), ...
~ Oliver Sutton (oliver.sutton@kcl.ac.uk) ~ Adversarial robustness ~ Charles University, Prague, March 2024  13/23



Characterising high dimensional spaces

Concentration of measure?

» Let x be sampled uniformly from the unit ball in RY. Then, for 0 < r <1
P(x|| >r)>1- rd

Quasi-orthogonality?
» In high dimensional spaces, randomly sampled points are typically nearly
orthogonal

» For any € > 0 the number of points x; € S¥~! C R9 such that |(x;, x;)| < €
for all i # j grows exponentially with d

» For points x, y sampled independently and uniformly on the sphere in RY,

de?
P(I(xy)l < ) = 1—exp (= )
See notes: Ball (1997) ‘An elementary introduction to modern convex geometry’ for an
introduction to high dimensional geometry
2Ledoux (2001), Ball (1997), ...
3Kainen and Kirkova (1993), Gorban, Tyukin, Prokhorov, Sofeikov (2016), ...
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Probability of a pair of points sampled from U (B,) satisfying

z-y <0.05
1.0 4
0.9 1
0.8 1
0.7 1
0.6 1
100 10* 102 103 10*
Dimension
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Explaining the paradox [s. et al. (2023) arxiv:2309.03665]

definite definite
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Paradox of apparent stability
» Even large random noise is unlikely to cause an input to be misclassified

» Most inputs can be misclassified by adding a small computed attack
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Explaining the paradox [s. et al. (2023) arxiv:2309.03665]

\

5a adversarial attack walks straight to decision boundary
adding random noise samples another point in this ball

misclassified points are those from a spherical cap

vvyyy

relative volume of a spherical cap is small in high
k dimensions
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Explaining the paradox [s. et al. (2023) arxiv:2309.03665]

\

5a adversarial attack walks straight to decision boundary
adding random noise samples another point in this ball

misclassified points are those from a spherical cap

vvyyy

relative volume of a spherical cap is small in high
k dimensions

Theorem (Random noise is a bad way to detect adversarial attacks)
Let f : RY — {0,1} be a linear classifier, let x € RY with f(x) = 0, and let

Ivll-

a= inf
vERY such that f(x+v)=1

Then, for any § > 1,

[y

P(s ~U(BL,) : f(x+s) # f(x)) <

5(“%)%-
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Building up the model s. et ai. (2023) arxiv:2300.03665]

» Data sampled in dimension d
» Balls By and Bj, unit radius, centres 2¢ apart

» Points of class 0 sampled from distribution Dy
supported in By

» Points of class 1 sampled from distribution D;
supported in B;

» Distributions Dy and D; don't have pathological
accumulation points

» they have densities py and p; which are bounded*:
there exists A > 1 such that

decision sﬁrface of f ) < A )
pi(x) < Va(B) for all x € B;

» Combined distribution D, samples labelled point

(x,£) € R? x {0,1}; each label has probability
» f is the optimal (balanced) classifier for this

4A simplified version of the Smeard Absolute Continuity (SmAC) condition: [Gorban et al.
(2018) Information Sciences]
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» Class i sampled from distribution D; in B; C R
» Centre distance: 2¢

» Bounded densities: A € R s.t. pj(x) < W?T)

» Combined distribution D, samples (x, £); each label has
T probability 1
decision surface of f




The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R
Centre distance: 2¢

Bounded densities: A € R s.t. p;(x) < %

vV vvyYy

Combined distribution D. samples (x, £); each label
} has probability %
decision surface of f

Theorem (The classifier is accurate)

For any € > 0, the probability that the classifier applies the correct label to a
randomly sampled data point grows exponentially to 1 with dimension n,
specifically

d
2

P((x,£) ~ D, : f(x) =4£) > 1_%,4(1_62) .
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For any € > 0, the probability that the classifier applies the correct label to a
randomly sampled data point grows exponentially to 1 with dimension n,

specifically

P((x,6) ~ D, : F(x) = ) > 1 — %A(l _ )t




The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R
Centre distance: 2¢

Bounded densities: A € R s.t. p;(x) < %
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R?
Centre distance: 2¢

Bounded densities: A € R s.t. pi(x) < \/d(B)

vV v vy

Combined distribution D, samples (x, £); each label
T has probability 3
decision surface of f

Theorem (Destabilising perturbations are rare)

For any fixed § > € > 0, the probability that a randomly selected perturbation
with Euclidean norm & causes a randomly sampled data point to be misclassified
converges exponentially to 0 with the dimension d, specifically

P((x,£) ~ Deys ~ UBs) : f(x +5) # ) < A(l - (1;5)2)%'
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Probability of sampling a point and a
perturbation such that the perturbed point
is misclassified

1.0
0.84 Perturbation size §
— 025
) ——= 0.25, Theorem 4 upper bound
£ 06 05
= 0.5, Theorem 4 upper bound
204 — 125
~==- 1.25, Theorem 4 upper bound
— 2.
0.24 ~==- 2.5, Theorem 4 upper bound
0.0 4

10° 10 10? 10% 10* 107
Data dimension, n

Theorem (Destabilising perturbations are rare)

For any fixed § > ¢ > 0, the probability that a randomly selected perturbation
with Euclidean norm 6 causes a randomly sampled data point to be misclassified
converges exponentially to 0 with the dimension d, specifically

P((x,€) ~ De,s ~UB5) - f(x+5) # ) < A(l_ <1i6)2>%'
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R?
Centre distance: 2¢

Bounded densities: A € R s.t. pi(x) < \/d(B)

vV v vy

Combined distribution D, samples (x, £); each label
T has probability 3
decision surface of f

Theorem (Destabilising perturbations are rare)

For any fixed § > € > 0, the probability that a randomly selected perturbation
with Euclidean norm & causes a randomly sampled data point to be misclassified
converges exponentially to 0 with the dimension d, specifically

P((x,£) ~ Deys ~ UBs) : f(x +5) # ) < A(l - (1;5)2)%'
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R?
Centre distance: 2¢

Bounded densities: A € R s.t. pi(x) < ﬁ

vV v.vy

Combined distribution D, samples (x, £); each label
T has probability 3
decision surface of f

Theorem (Susceptible data points are typical)

For any e > 0 and 6 € [e,1 + €|, the probability that a randomly sampled data
point is susceptible to an adversarial attack with Euclidean norm § grows
exponentially to 1 with the dimension d, specifically

P((x,¢) ~ D. : there exists s € BY5 such that f(x + s) # ()

[SIEN

21-%;\(1—(5—6)2) :
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R?
Centre distance: 2¢

Bounded densities: A € R s.t. pj(x) < ﬁ

vV v vy

Combined distribution D, samples (x, £); each label
T has probability 3
decision surface of f

Theorem (Gradient-based methods find the optimal adversarial attack)

Let L : Rsg — R denote any differentiable, monotonically increasing loss function,
and let (x,0) ~ D.. Then, with probability 1 with respect to the sample (x, (),
the gradient of the loss L(|f(x) — {|) with respect to the components of x
corresponds to a positive multiple of the optimal attack direction.
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

Class i sampled from distribution D; in B; C R?
Centre distance: 2¢

Bounded densities: A € R s.t. pj(x) < ﬁ

vV v vy

Combined distribution D, samples (x, £); each label
} has probability 3
decision surface of f
Let d¢(x) measure how far x is on the wrong side of the decision boundary for class /.

Theorem (Adversarial attacks are universal)

Let € > 0 and suppose that x,z ~ D, are independently sampled with the same
label £. For any v € (0, 1], the probability that x is destabilised by all
perturbations s € RY which destabilise z with margin dy(z + s) > ~ converges
exponentially to 1 with d. Specifically, let S, = {s € R? : dy(z +s) > ~}. Then,

P(x,z~Dy: f(x+s)#Lforalls€S,)> (1—/4(1_%2)%)2
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The model predicts the observations [s. et al. (2023) arxiv:2309.03665]

In summary, in high dimensions:
» The classifier is accurate
» Destabilising random perturbations are rare

» Typical data points sampled from either class are susceptible to small
adversarial attacks which can be easily constructed and which universally
affect most points from the same class

Extensions discussed in the paper:
» General data distributions
» Non-flat decision surfaces
» Multi-class setting
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Can we certify models are free from adversarial attacks?

NN: networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

F: family of 2-class data distributions, margin at least § > 0 between opposite classes.

L: loss function T training data V: test data M=|TuV|

Theorem (Inevitability, typicality and undetectability of instability)

Let e € (0,v/d —1) and fix 0 < § < e/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:
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Can we certify models are free from adversarial attacks?

NN networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

JF: family of 2-class data distributions, margin at least 4 > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,/d —1) and fix 0 < § < e/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

1 There exists a network which correctly classifies the training data T and the test
data V, satisfying
f i ;
€ arg_min Z L(x,4; f)
(x,£)eTUY
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Can we certify models are free from adversarial attacks?

NN networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

JF: family of 2-class data distributions, margin at least 4 > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,/d —1) and fix 0 < § < ¢/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

1 There exists a network which correctly classifies the training data T and the test
data V, satisfying
f i i f
€ arg Jnin Z L(x,4; f)
(x,£)eTUY

2 Yet, for any q € (0,1/2), with probability greater than or equal to 1 — exp(—2g*M)
there exists a multi-set U C T UV of cardinality at least [(1/2 — q)M| on which f

is unstable in the sense that for any (x,¢) € U and any « € (0,¢/2), there exists a
perturbation ¢ € R" with ||¢|| < a/+/n and

If(x) — f(x+¢)| =1.
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Can we certify models are free from adversarial attacks?

NN networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

JF: family of 2-class data distributions, margin at least 4 > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,/d —1) and fix 0 < § < e/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

3 Moreover, such destabilising perturbations are typical in the sense that if vectors
are sampled from the equidistribution in B,(c/+/n,0), then for (x,£) € U

|f(x) —f(x+¢{)|=1 with probability at least 1 — %
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Can we certify models are free from adversarial attacks?

NN networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

JF: family of 2-class data distributions, margin at least 4 > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,/d —1) and fix 0 < § < ¢/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

3 Moreover, such destabilising perturbations are typical in the sense that if vectors
are sampled from the equidistribution in B,(c/+/n,0), then for (x,£) € U

|f(x) — f(x+¢{)|=1 with probability at least 1 — %

4 Furthermore, there exist universal destabilising perturbations, in the sense that a
single perturbation ¢ drawn from the equidistribution in B,(c/+/n,0) destabilises
m < |U| points from the set U with probability at least

_m
2n°
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Can we certify models are free from adversarial attacks?

NN: networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

F: family of 2-class data distributions, margin at least § > 0 between opposite classes.

L: loss function T training data V: test data M= |TUV|

Theorem (Inevitability, typicality and undetectability of instability)

Let e € (0,v/d —1) and fix 0 < § < e/+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

5 For the same distribution Ds there is a robust network with the same
architecture as f, satisfying

fearg(p min L(TUV, )

€ N,L
with L(T UV, f) = 0, which is robust in the sense that for all (x,£) € T UV
f(x)=f(x+¢)
for any ¢ € R" with ||¢|| < a/+/n, even when |T UV| = oo.
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Can we certify models are free from adversarial attacks?

NN: networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

F: family of 2-class data distributions, margin at least § > 0 between opposite classes.

L: loss function T: training data V: test data M =T uUV|

Theorem (Inevitability, typicality and undetectability of instability)

Let e € (0,v/d —1) and fix0 < § < e/+/d. Then, there is an uncountably large family
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Dy :

6 Moreover, there exist pairs of unstable and robust networks, fx, fx and fa, f,
satisfying the statements above such that the maximum absolute difference

between their weights and biases is either arbitrarily small or arbitrarily large. That

is, for any A > 0,\ > 0:

19(£) — ©(A)lleo < A, 1O(f2) — O(A)]lco > A.
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Can we certify models are free from adversarial attacks?

NN networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
ReLU activations inside, step function for binary classification on output.

JF: family of 2-class data distributions, margin at least 4 > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,v/d —1) and fix 0 < § < £/+/d. Then, there is an uncountably large family
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Ds:

7 However, for the above robust solution f,

a) there exists an uncountably large family of distributions Ds € F on which f
correctly classifies both the training and test data, yet fails in the same way

b) there exists an uncountably large family of distributions Ds € F such that the
map f is robust on T UV (with respect to perturbations ¢ with ||C|| < a/+/n,

a € (0,e/2)) with probability

Mk
on+1

but is unstable to arbitrarily small perturbations on future samples with
probability k /2",
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Can we certify models are free from adversarial attacks?

NN: networks with input dimension d, first hidden layer has 2d neurons, L > 2 layers,
RelLU activations inside, step function for binary classification on output.

F: family of 2-class data distributions, margin at least § > 0 between opposite classes.

L: loss function T training data V: test data M =T UV

Theorem (Inevitability, typicality and undetectability of instability)

Lete € (0,v/d—1) and fix0 < § < /+/d. Then, there is an uncountably large family of
distributions Ds € F such that for any Ds € F, any training and validation data T, V
drawn independently from Dy :

1. A network perfectly classifies the data, and minimises the loss

2. The training/test points are susceptible to small adversarial attacks

3. Nearly half the training/test points are susceptible to small adversarial attacks
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» Stability to random perturbations is not the same as stability to adversarial
perturbations!

» In high dimensions, the two are very different
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