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Traveling Salesman Problem (TSP)

Problem 1 TSP

Given a set of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city.

Exact solutions ‘
Concorde math.uwaterloo.ca/tsp/concorde.html
(Integer Linear Programming (ILP))

Heuristic algorithms ‘
LKH – K. Helsgaun efficient implementation of the Lin-
Kernighan heuristic (1998). http://www.akira.ruc.
dk/~keld/research/LKH/ https://www.math.uwaterloo.ca/tsp/pubs/
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Multi-Goal Planning
Problem 2 Multi-Goal Planning

Having a set of locations or neighborhoods to be visited, determine the cost-efficient
path or trajectory to visit them.

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of Intelligent & Robotic Systems.
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Decoupled Solution of Multi-Goal Planning

First, determine the sequence.
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A solution of the TSP for the centers of the disks

Second, solve the Touring problem.
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A solution of the CETSP
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Sampling-based Solution of the Touring problem
Sample each region (neighborhood) with k samples, e.g., k = 6.
Construct graph and find the shortest tour in by graph search in O(nk3) for n regions and
nk2 edges in the sequence. For the closed path, we need to examine all k possible starting locations.
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Sampling-based Solution of the TSPN
For an unknown sequence of the visits to the regions, there are O(n2k2) possible edges.
Finding the shortest path is NP-hard, as it can be formulated as the Generalized TSP.
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Noon-Bean transformation (GATSP to ATSP)
1. Create a zero-length cycle in each set and set all other arcs to∞ (or 2M).

To ensure all vertices of the cluster are visited before leaving the cluster.

2. For each edge (qm
i ,q

n
j ) create an edge (qm

i ,q
n+1
j ) with a value increased by large M.

To ensure visit of all vertices in a cluster before the next cluster.
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Planning with Curvature-constrained Paths

General aviation Unmanned vehicles Flying cars
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Dubins Traveling Salesman Problem

Visit the given set of locations.
Collect required data at the locations.
Consider a fixed-wing aerial vehicle.

Exploit the Dubins vehicle model
Minimal turning radius ρ.
Constant forward velocity v .
State of the vehicle is q = (x , y , θ). ẋ

ẏ
θ̇

 = v

 cos θ
sin θ

u
ρ

 , |u| ≤ 1, (1)

Traveling Salesmen Problem (TSP)
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Dubins Traveling Salesman Problem

Visit the given set of locations.
Collect required data at the locations.
Consider a fixed-wing aerial vehicle.

Exploit the Dubins vehicle model
Minimal turning radius ρ.
Constant forward velocity v .

Dubins, 1961.
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Dubins Traveling Salesman Problem with Neighborhoods
Utilizes non-zero sensing radius of the sensor.
Decreases length of the tour.
Makes the problem more challenging.

DTSPN

Petr Váňa, Computational Robotics Laboratory https://comrob.fel.cvut.cz



Combining Continuous and Combinatorial Optimization
for Multi-goal Trajectory Planning

Existing Approaches to the DTSP(N)
Heuristic (decoupled & evolutionary) approaches

Savla et al., 2005
Ma and Castanon, 2006
Macharet et al., 2011
Macharet et al., 2012
Ny et al., 2012
Yu and Hang, 2012
Macharet et al., 2013
Zhant et al., 2014
Macharet and Campost, 2014
Váňa and Faigl, 2015
Isaiah and Shima, 2015
...

Sampling-based approaches
Obermeyer, 2009
Oberlin et al., 2010
Macharet et al., 2016

Convex optimization
(Only if the locations are far enough)
Goac et al., 2013

Lower bound for the DTSP
Dubins Interval Problem (DIP)
Manyam et al., 2016

DIP-based inform sampling
Váňa and Faigl, 2017

Lower bound for the DTSPN
Using Generalized DIP (GDIP)
Váňa and Faigl, 2018, 2020, 2022 (In review)
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Properties of the Dubins distance function

Piecewise-continuous function.
Closed form expression.
Fast to compute 0.5µs.
Continuous for d > 4,
where d = ‖p2−p1‖

ρ .

Normalized form
q1 = (p1, θ1) = (0,0, θ1),
q2 = (p2, θ2) = (dρ,0, θ2).
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Dubins Interval Problem (DIP)
Determine the shortest Dubins maneuver connecting p1 and p2 given the angle intervals
θ1 ∈ [θmin

1 , θmax
1 ] and θ2 ∈ [θmin

2 , θmax
2 ]. (closed-form solution)

Dubins Interval Problem (DIP)

Manyam, Rathinam, and Casbeer, 2016

Case Maneuvers Conditions on θ1 and θ2

1) S or Lψ or Rψ 1

2) LS or LRψ for θ1 = θmax
1 and θ2 ∈ Θ2

3) RS or RLψ for θ1 = θmin
1 and θ2 ∈ Θ2

4) SL or RψL for θ1 ∈ Θ1 and θ2 = θmin
2

5) SR or LψR for θ1 ∈ Θ1 and θ2 = θmax
2

6) LSR for θ1 = θmax
1 and θ2 = θmax

2
7) LSL or LRψL for θ1 = θmax

1 and θ2 = θmin
2

8) RSL for θ1 = θmin
1 and θ2 = θmin

2
9) RSR or RLψR for θ1 = θmin

1 and θ2 = θmax
2

Satyanarayana G Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcia. Tightly bounding the
shortest dubins paths through a sequence of points. Journal of Intelligent & Robotic Systems,
88(2):495–511, 2017.
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Dubins Interval Problem (DIP)
Determine the shortest Dubins maneuver connecting p1 and p2 given the angle intervals
θ1 ∈ [θmin

1 , θmax
1 ] and θ2 ∈ [θmin

2 , θmax
2 ] (closed-form solution)

Dubins Interval Problem (DIP)

Manyam, Rathinam, and Casbeer, 2016

⇒

Dubins Touring Problem (DTP)
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Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurný. On solution of the dubins touring
problem. In European Conf. on Mobile Robots (ECMR), pages 1–6. IEEE, 2017.
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First attempt to solve DTSP optimally (2016)
Find the optimum without a priory known sequence using Noon-Bean transformation.

Dubins TSP (unknown sequence)

feasible path
lower-bound path

Quality of the solution found in 60s

0.20

0.25

0.33

0.50

1.00

8 12 16
Number of targets regions (n)

R
el

at
iv

e 
de

ns
ity

 (d)

0.001 0.01 0.1

Quality

(α − 1)
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How to remove (bound) intervals?

Remove heading angle intervals which cannot contribute to the optimum.
Testing one location takes O(k3).

LB

UB

k samples
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How to remove (bound) intervals?

LL - Lower bound.
LU - Upper bound.

Condition 1 for NOT removing interval Θi

∃Θi−w ∈ Hi−w ,∃Θi+w ∈ Hi+w : LL(Θi−w ,Θi ) + LL(Θi−w ,Θi ) ≤ LU(Θi−w ,Θi+w ).
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Maximization Dubins Interval Problem (Max-DIP)
Determine the longest Dubins maneuver
connecting pi and pj given the angle inter-
vals θi ∈ [θmin

i , θmax
i ] and θj ∈ [θmin

j , θmax
j ].

Remove heading angle intervals which can-
not contribute to the optimum.

Max-DIP

RSR maneuver

Dubins Touring Problem (DTP)

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.
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Generalized Dubins Interval Problem (GDIP)
Determine the shortest Dubins maneuver connecting P1 and P2 given the angle intervals
θ1 ∈ [θmin

1 , θmax
1 ] and θ2 ∈ [θmin

2 , θmax
2 ]

Full problem (GDIP)

RSR maneuver

⇒

One-side version (OS-GDIP)

RSR maneuver

Transformation from the GDIP to the OS-GDIP:
P ′1 = {p′1} = {(0,0)}
P ′2 = P2 ⊕ P̌1 = ∪{pb − pa,pa ∈ P1,pb ∈ P2}

Petr Váňa and Jan Faigl. Optimal Solution of the Generalized Dubins Interval Problem. In Robotics: Science and
Systems (RSS), 2018. Best student paper award nominee.
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Optimal Solution of the GDIP
Closed-form expressions (1-6)
1) S type

2) CS type

3) Cψ type

4) CSC type

5) CSC type

6) CCψC type

Convex optimization (7)

7) CCψ type

Average computational time
Problem Time [µs] Ratio

Dubins maneuver 0.58 1.00
DIP 2.86 4.93
GDIP 12.63 21.78
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Computing bounds for a single sequence of the DTSPN

Lower-bound (red), Upper bound – feasible solution (blue)

Fi
xe

d
se

qu
en

ce
!
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Convergence for a single sequence of the DTSPN

Convergence for 10 regions
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max) where ωmax is

maximal resolution.
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Branch-and-Bound (BNB) framework

Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and Anand Subramanian. A
branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS Journal on
Computing, 28(4):752–765, 2016.
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Proposed Branch-and-Bound (BNB) algorithm
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Proposed Branch-and-Bound (BNB) algorithm
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [1, 3, 6, 7], ω = 8

LB = 16.0

UB = 19.6
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
13.9
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [5, 6, 1, 3, 7], ω = 8

LB = 14.5

UB = 20.9
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
13.9
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 5, 1, 3, 7], ω = 8

LB = 13.9

UB = 17.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
13.9
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 1, 5, 3, 7], ω = 8

LB = 15.6

UB = 19.6
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
13.9
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 1, 3, 5, 7], ω = 8

LB = 14.8

UB = 18.4
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
13.9
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 5, 1, 3, 7], ω = 32

LB = 16.0

UB = 17.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
14.5
20.9

[6,5,1,3,7]
16.0
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [5, 6, 1, 3, 7], ω = 32

LB = 16.8

UB = 18.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.0
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
14.8
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 1, 3, 5, 7], ω = 32

LB = 17.2

UB = 18.4
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.0
17.0

[6,1,5,3,7]
15.6
19.6

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 1, 5, 3, 7], ω = 32

LB = 18.2

UB = 19.5
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.0
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 1, 5, 3, 7], ω = 32

LB = 18.2

UB = 19.5
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.0
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 5, 1, 3, 7], ω = 128

LB = 16.8

UB = 17.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.8
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
16.0
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [1, 3, 6, 7], ω = 32

LB = 18.5

UB = 19.6
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
16.8
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
18.5
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 5, 1, 3, 7], ω = 512

LB = 17.0

UB = 17.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
16.8
18.0

[6,5,1,3,7]
17.0
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
18.5
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [5, 6, 1, 3, 7], ω = 128

LB = 17.7

UB = 18.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
17.7
18.0

[6,5,1,3,7]
17.0
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
18.5
19.6
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Proposed Branch-and-Bound (BNB) algorithm

1

2

3

4

5

6

7

Σ = [6, 5, 1, 3, 7], ω = 512

LB = 17.0

UB = 17.0
Σ = [1,3,7], ω = 8,

LB: 12.1
UB: 20.9

[6,1,3,7]
13.9
20.9

[5,6,1,3,7]
17.7
18.0

[6,5,1,3,7]
17.0
17.0

[6,1,5,3,7]
18.2
19.5

[6,1,3,5,7]
17.2
18.4

[1,6,3,7]
17.6
21.3

[1,3,6,7]
18.5
19.6

Optimal sequence found!
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Example solutions for the DTSPN

Uniform sensing radius

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13
R14

R15

R16

R17

R18

R19 R20

R21

R22

R23

R24

R25
R26

R27

R28

R29

R30

Various sensing radius

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13
R14

R15

R16

R17

R18

R19 R20

R21

R22

R23

R24

R25
R26

R27

R28

R29

R30
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Summary and empirical results

Proposed BNB for the DTSPN
Continuous part→ GDIP.
Sequencing part→ branching.
Sub-sequences bounded by LB/UB.
Neighborhoods→ faster solutions.

BNB algorithm implemented in Julia.
Optimal GDIP solution in C++11.

https://github.com/comrob/OptimalDTSPN
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Than you for your attention!
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