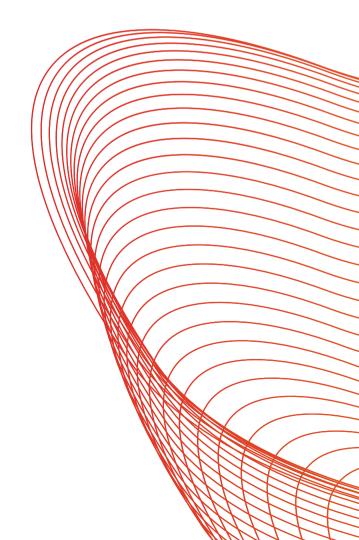
Michał Znaleźniak, Przemysław Rola, Patryk Kaszuba, Jacek Tabor, Marek Śmieja

CONTRASTIVE LEARNING, DEEP CLUSTERING, HIERARCHICAL CLUSTERING, DATA MINING

Contrastive Hierarchical Clustering

ECML PKDD September 2023



Presented by Michał Znaleźniak

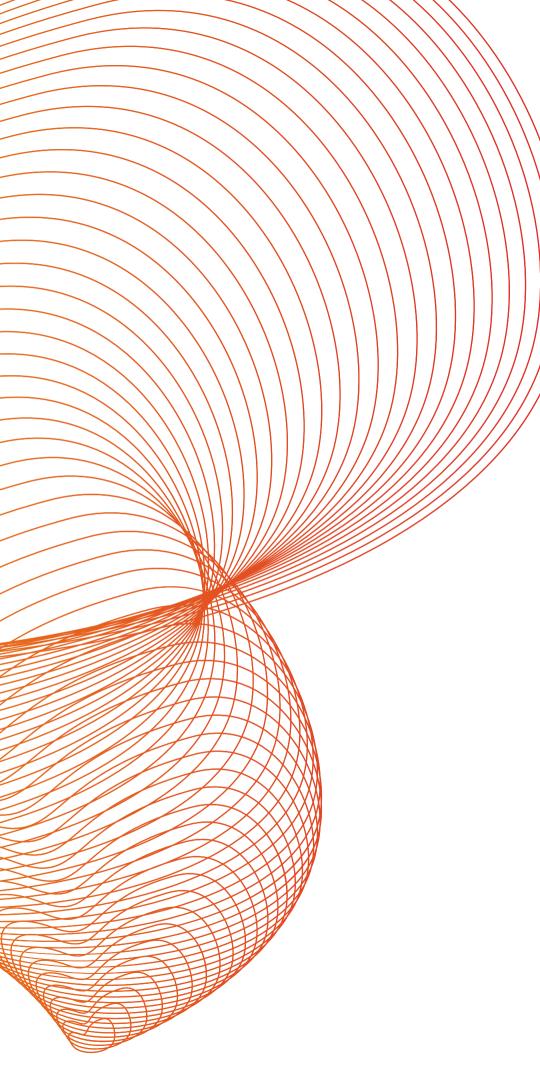


Table of Contents

• Introduction

• Clustering

• CoHiClust - Method

- Model architecture
- Clustering Head
- Losses and Regularization

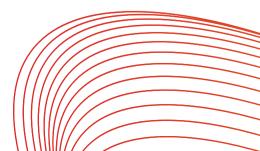
• Experiments

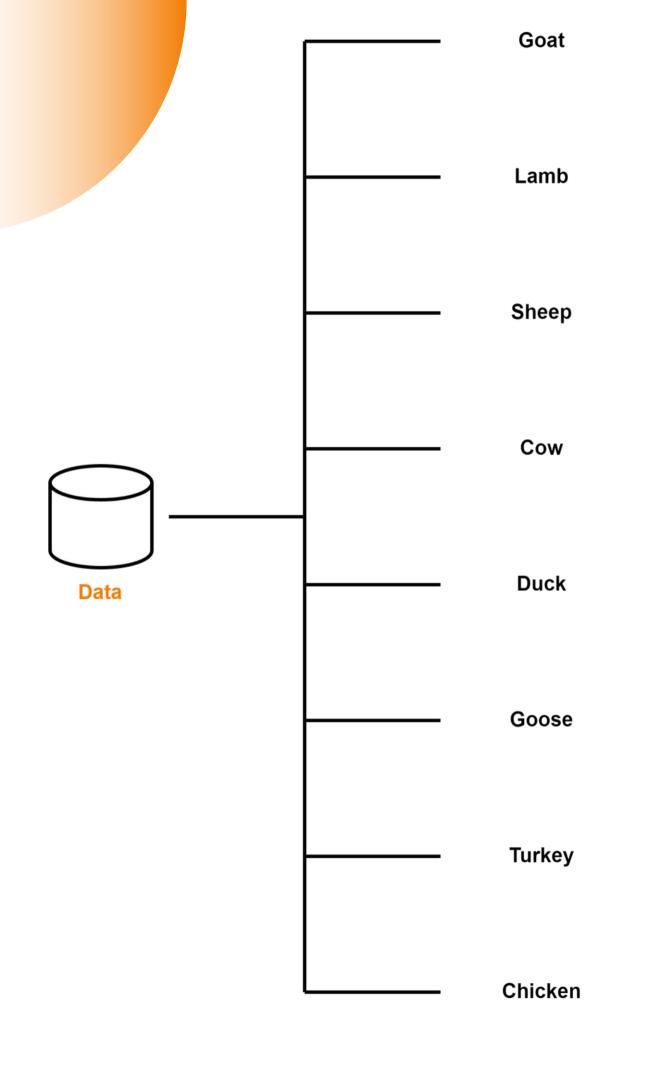
- Results
- Analysis of the clusters structure

• Conclusions

Clustering

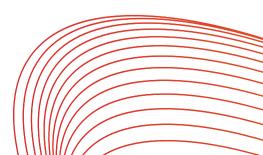
- Helps to understand the characteristics of the dataset.
 It does that by looking for meaningful groups or collections in the dataset.
- Possible to distinguish two broad types:
 - Flat clustering
 - Hierarchical clustering

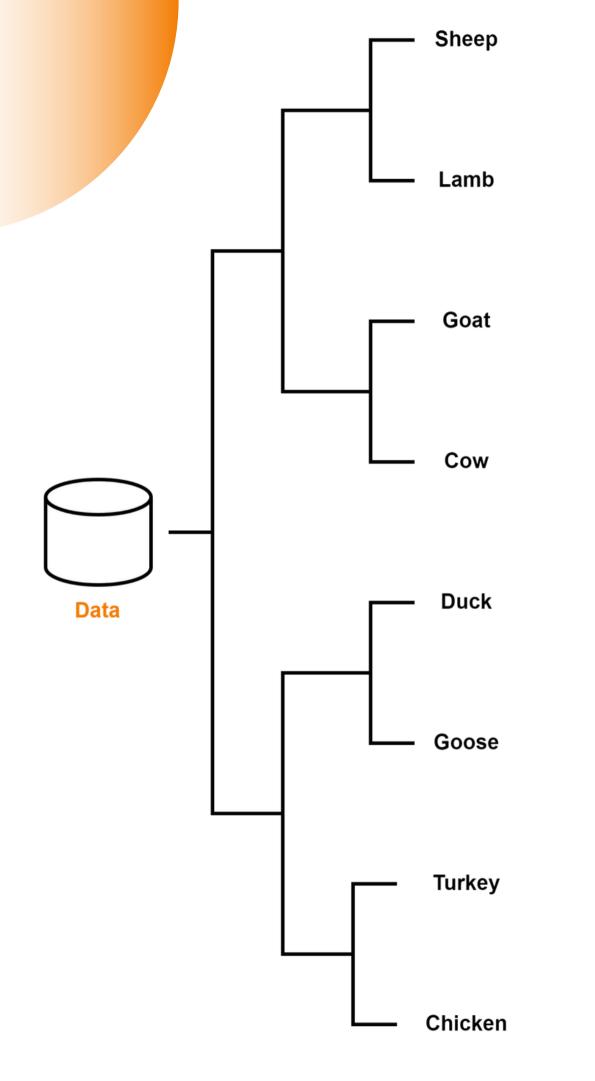




Clustering

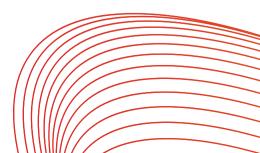
- Helps to understand the characteristics of the dataset.
 It does that by looking for meaningful groups or collections in the dataset.
- Possible to distinguish two broad types:
 - Flat clustering
 - Hierarchical clustering





Clustering

- Helps to understand the characteristics of the dataset.
 It does that by looking for meaningful groups or collections in the dataset.
- Possible to distinguish two broad types:
 - Flat clustering
 - Hierarchical clustering



Contrastive Hierarchical Clustering

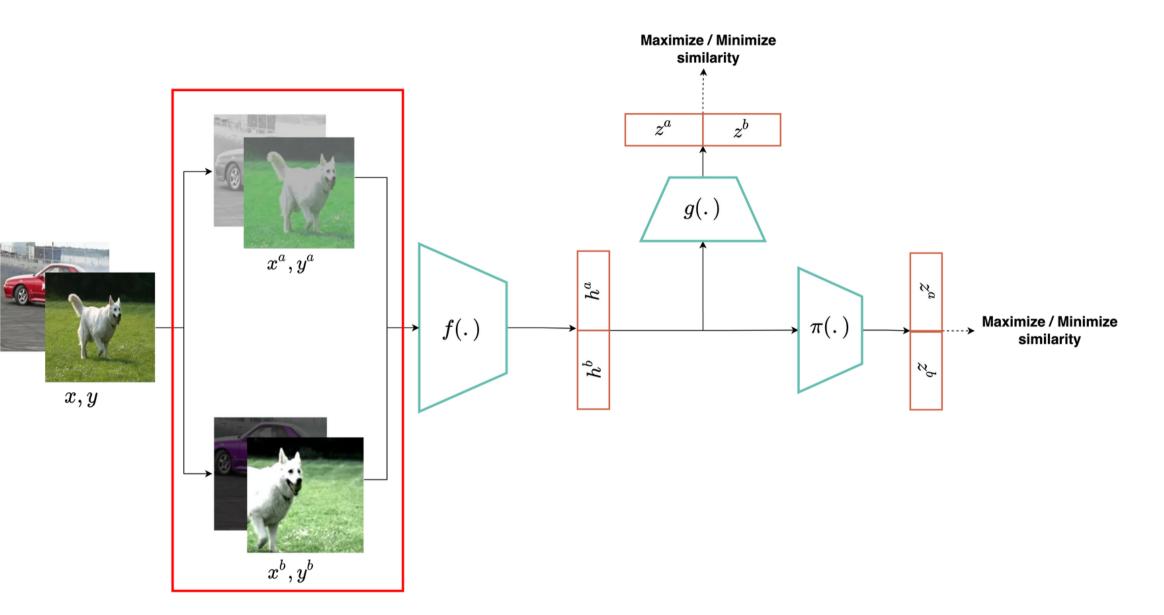
Observations

- The information contained in the flat partition is **limited**.
- Deep clustering has been **dominated** by flat models.

Goals

- Propose a new head for cluster-level representation learning which can generate hierarchical structure of clusters.
- Focus on analyzing the relationship and similarites between clusters besides just reporting. the metrics.

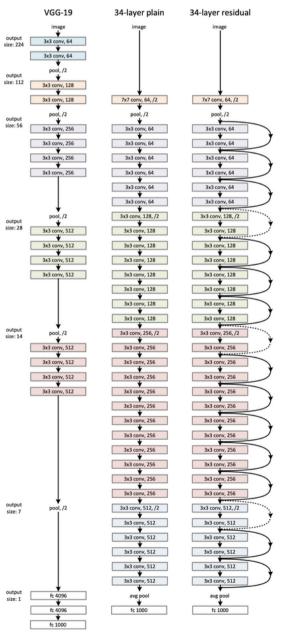
- Transforms any given data example randomly resulting in two correlated views of the same example [1].
- Augmentation list includes:
 - **Resized** Crop \bigcirc
 - Horizontal Flip \bigcirc
 - Color Jitter \bigcirc
 - Grayscale \bigcirc

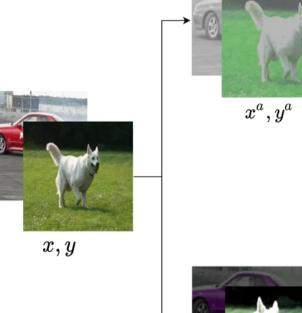


Data Augmentation Module

[1] A Simple Framework for Contrastive Learning of Visual Representations

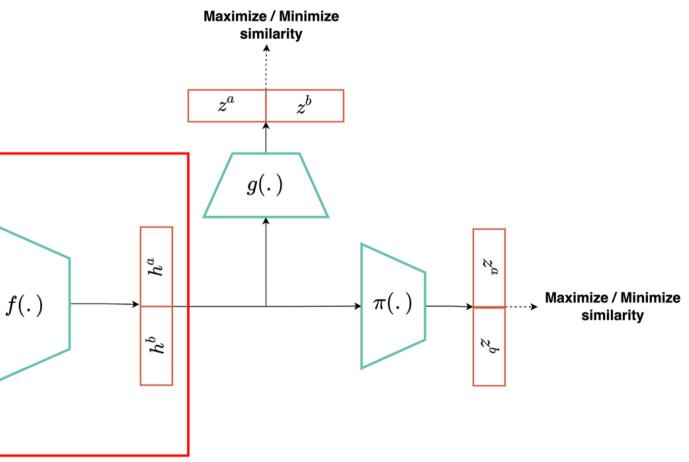
- f(.) is a backbone that computes an internal representation.
- We analyzed how backbone architecture impacts the final quality.





 x^b,y^b

Image from Deep Residual Learning for Image Recognition



Feature Extractor

[1] A Simple Framework for Contrastive Learning of Visual Representations

- g(.) is a projection network (MLP) that projects representation into latent space.
- We minimize / maximize similarity between differently augmented views with NT-Xent loss [1] in latent space.

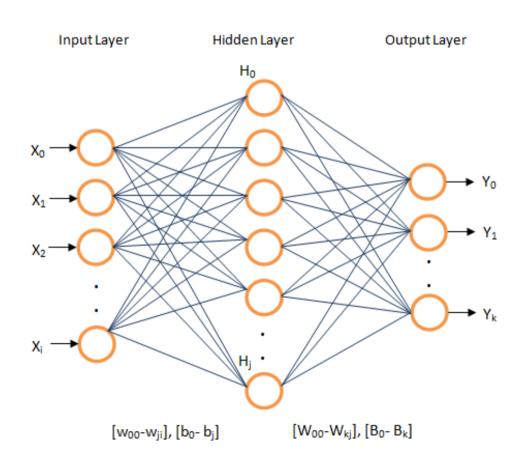
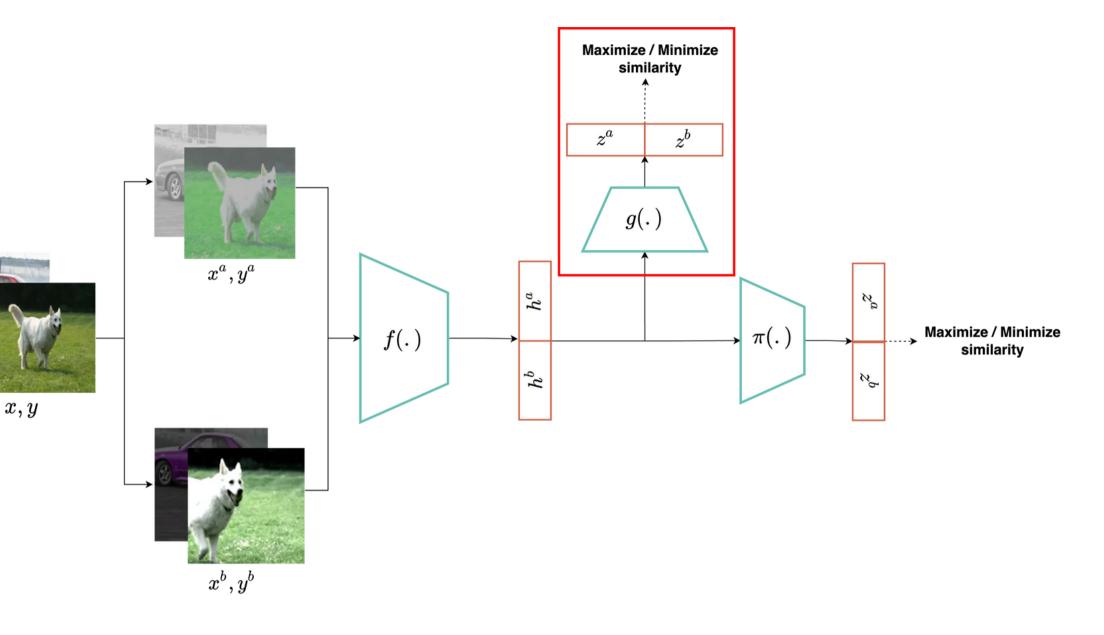


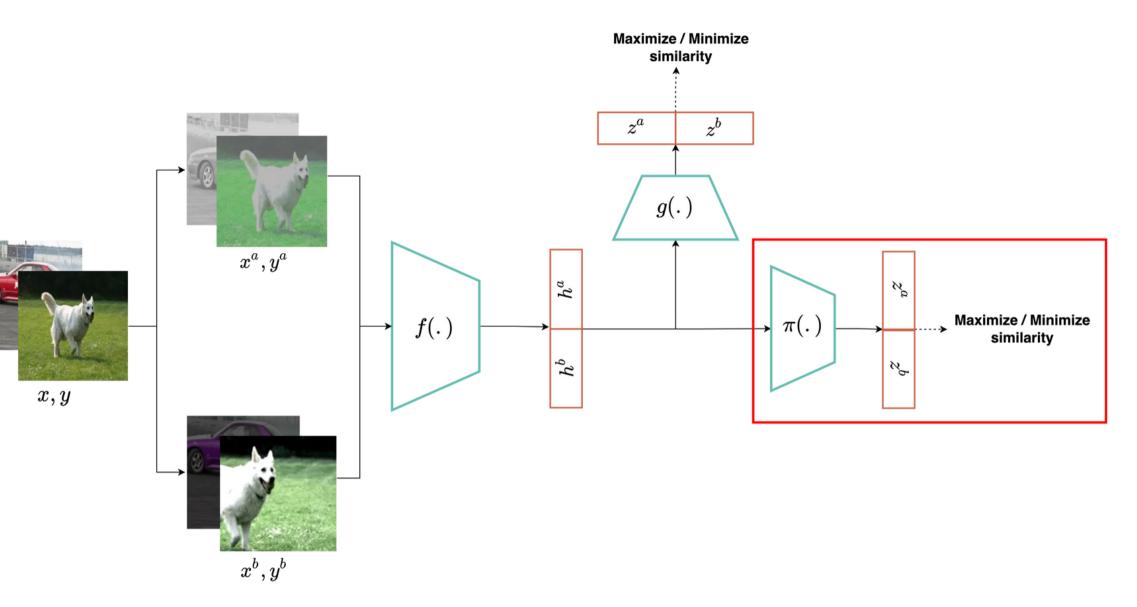
Image from Neural Networks and MLP



Projection Head

[1] A Simple Framework for Contrastive Learning of Visual Representations

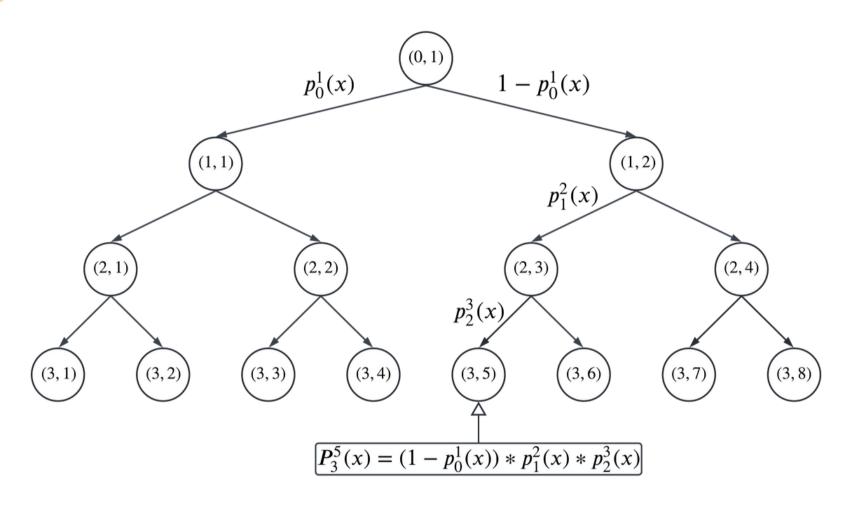
- $\pi(.)$ is one fully connected layer distilled into a soft decision tree [2].
- Assigns data points to clusters by a sequence of decisions.
- Trained with contrastive hierarchical loss function which maximizes the likelihood of similar data points being assigned to the same clusters.



Hierarchical Clustering Head

[2] Distilling a Neural Network Into a Soft Decision Tree

Contrastive Hierarchical Clustering - Tree Model



To construct a decision tree, we follow the idea behind soft decision trees [2], and model the tree path by a sequence of decisions:

$$\pi(z) = [\sigma(w_1^T z + b_1), \dots, \sigma(w_K^T z + b_K)]$$

linear layer.

clusters on all levels of the tree:

$$P_t(x) = [P_t^0(x), P_t^1(x), \dots, P_t^{2^t-1}(x)]$$
, for $t = [1, T]$.

[2] Distilling a Neural Network Into a Soft Decision Tree

where $\sigma(.)$ is a sigmoid function and $w_n \in \mathbb{R}^N$ with $b_n \in \mathbb{R}$ are weights of a

With $\pi(.)$ output we can define a probability distribution of assigning data to

Contrastive Hierarchical Clustering - Building structure

Similarity between data points

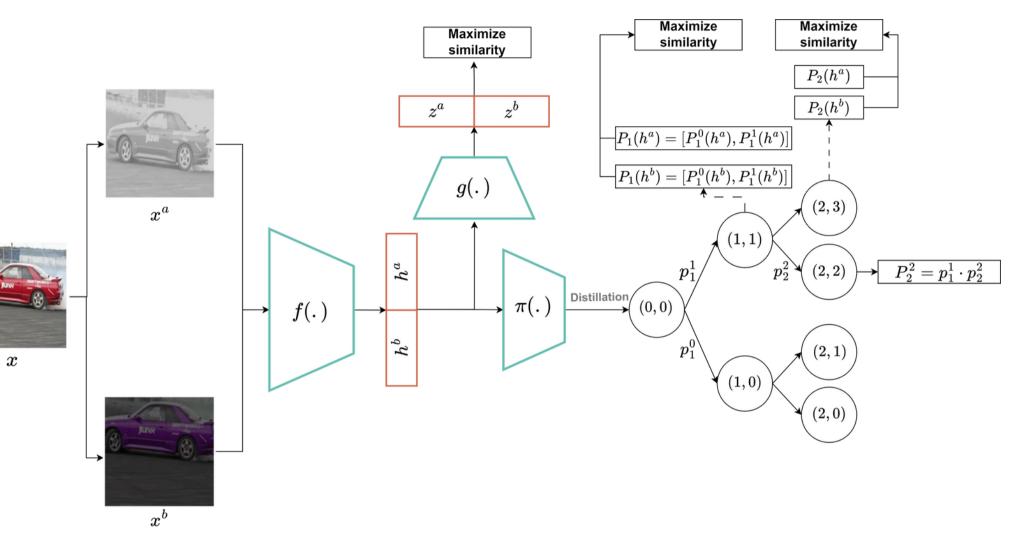
$${s_t}\left({{x_1},{x_2}}
ight) = \sqrt {{P_t}\left({{x_1}}
ight) \cdot {P_t}\left({{x_2}}
ight)} = \sum\limits_{i = 0}^{{2^t} - 1} {\sqrt {{P_t^i}\left({{x_1}}
ight) P_t^i\left({{x_2}}
ight)} }}$$

Hierarchical clustering loss

$$CoHiLoss = rac{1}{N(N-1)}\sum_{j=1}^{N}\sum_{i
eq j}s\left(x_{j}, ilde{x}_{i}
ight) - rac{1}{N}\sum_{j=1}^{N}s\left(x_{j}, ilde{x}_{j}
ight)$$

Training vs Inference

- Tree model in inference mode returns the index of the most probable path.
- Tree model in training mode returns the probability of assigning data to every cluster.



Contrastive Hierarchical Clustering - Regularization

Regularization

- (R1) How to prevent collapsing and how to use sub-trees equally?
 - Minimizing the cross-entropy between the desired distribution [0.5, 0.5] and the actual distribution to choose the left or right path in a given node.
- (R2) Improving the representation with NT-Xent [1] Loss.

Pruning

- How to match the number of leaves with the
 - number of classes?
 - Namely, we reduce leaves with the **lowest**

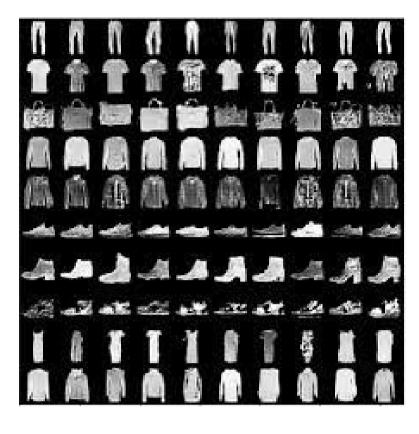
[1] A Simple Framework for Contrastive Learning of Visual Representations

expected fraction of data points: $P_T^i = \frac{1}{|X|} \sum_{x \in Y} P_T^i(x)$

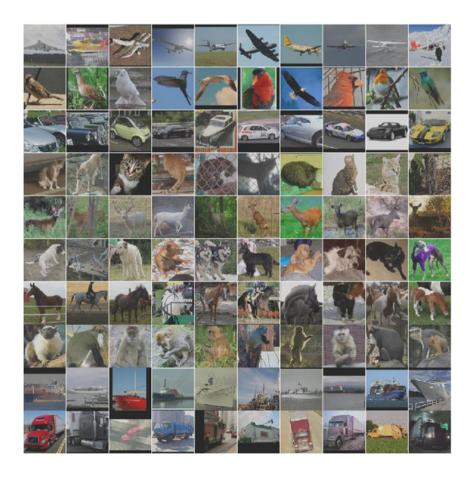
MNIST

CIFAR100

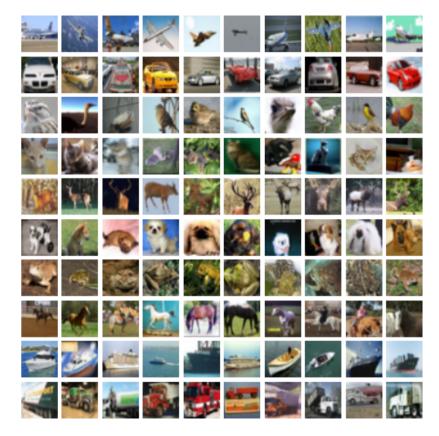
F-MNIST



STL10



CIFAR10



ImageNet10

Results

Comparison with flat clustering methods on datasets of color images

Dataset		CIFAR-10			CIFAR-10)		STL-10		I	mageNet-1	0	Im	ageNet-Do	ogs
Metrics	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI
K-means (Mac)	0.087	0.229	0.049	0.084	0.130	0.028	0.125	0.192	0.061	0.119	0.241	0.057	0.055	0.105	0.020
SC (Zelnik-Manor & Perona)	0.103	0.247	0.085	0.090	0.136	0.022	0.098	0.159	0.048	0.151	0.274	0.076	0.038	0.111	0.013
AC (Gowda & Krishna, 1978)	0.105	0.228	0.065	0.098	0.138	0.034	0.239	0.332	0.140	0.138	0.242	0.067	0.037	0.139	0.021
NMF (Cai)	0.081	0.190	0.034	0.079	0.118	0.026	0.096	0.180	0.046	0.132	0.230	0.065	0.044	0.118	0.016
AE (Bengio et al.)	0.239	0.314	0.169	0.100	0.165	0.048	0.250	0.303	0.161	0.210	0.317	0.152	0.104	0.185	0.073
DAE (Vincent et al., 2010)	0.251	0.297	0.163	0.111	0.151	0.046	0.224	0.302	0.152	0.206	0.304	0.138	0.104	0.190	0.078
DCGAN (Radford et al., 2015)	0.265	0.315	0.176	0.120	0.151	0.045	0.210	0.298	0.139	0.225	0.346	0.157	0.121	0.174	0.078
DeCNN (Zeiler et al., 2010)	0.240	0.282	0.174	0.092	0.133	0.038	0.227	0.299	0.162	0.186	0.313	0.142	0.098	0.175	0.073
VAE (Kingma & Welling, 2013)	0.245	0.291	0.167	0.108	0.152	0.040	0.200	0.282	0.146	0.193	0.334	0.168	0.107	0.179	0.079
JULE (Yang et al., 2016)	0.192	0.272	0.138	0.103	0.137	0.033	0.182	0.277	0.164	0.175	0.300	0.138	0.054	0.138	0.028
DEC (Xie et al., 2016)	0.257	0.301	0.161	0.136	0.185	0.050	0.276	0.359	0.186	0.282	0.381	0.203	0.122	0.195	0.079
DAC (Chang et al., 2017)	0.396	0.522	0.306	0.185	0.238	0.088	0.366	0.470	0.257	0.394	0.527	0.302	0.219	0.275	0.111
DCCM (Wu et al., 2019)	0.496	0.623	0.408	0.285	0.327	0.173	0.376	0.482	0.262	0.608	0.710	0.555	0.321	0.383	0.182
PICA (Huang et al., 2020)	0.591	0.696	0.512	0.310	0.337	0.171	0.611	0.713	0.531	0.802	0.870	0.761	0.352	0.352	0.201
CC (Li et al., 2021a)	0.705	0.790	0.637	0.431	0.429	0.266	0.764	0.850	0.726	0.859	0.893	0.822	0.445	0.429	0.274
CoHiClust	0.779	0.839	0.731	0.467	0.437	0.299	0.584	0.613	0.474	0.907	0.953	0.899	0.411	0.355	0.232

Comparison with hierarchical models

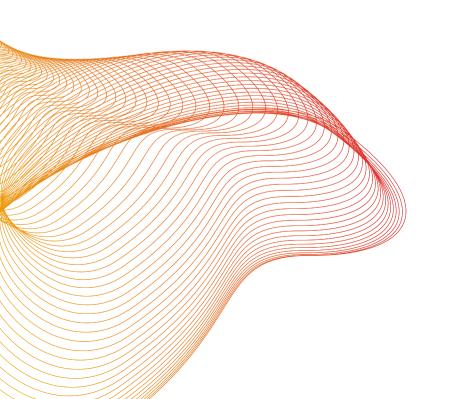
Method		MNIST		F-MNIST			
	DP	NMI	ACC	DP	NMI	ACC	
DeepECT	0.82	0.83	0.85	0.47	0.60	0.52	
DeepECT + Aug	0.94	0.93	0.95	0.44	0.59	0.50	
IDEC (agglomerative complete*)	0.40	0.86	0.85	0.35	0.58	0.53	
AE + k-means (bisecting*)	0.53	0.70	0.77	0.38	0.52	0.48	
CoHiClust	0.97	0.97	0.99	0.52	0.62	0.65	

Results - Ablation Study

Ablation Study - Backbone

Table 2: The importance of architecture choice.

Method	С	oHiClu		CC [24	
Backbone	NMI	ACC	ARI	NMI	ACC
ResNet18	0.711	0.768	0.642	0.650	0.736
ResNet34	0.730	0.788	0.667	0.705	0.790
ResNet34 ResNet50	0.767	0.840	0.720	0.663	0.747



ARI

0.569

0.637

0.585

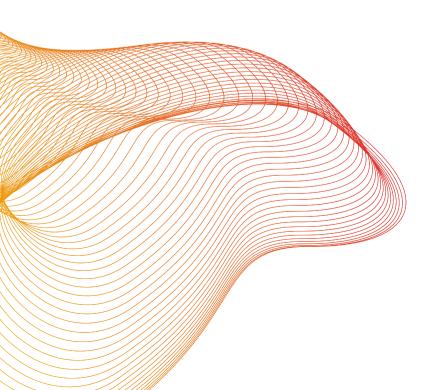
Results - Ablation Study

Ablation Study - Impact of losses

Table 3: Ablation study of CoHiClust loss function performed on CIFAR-10.

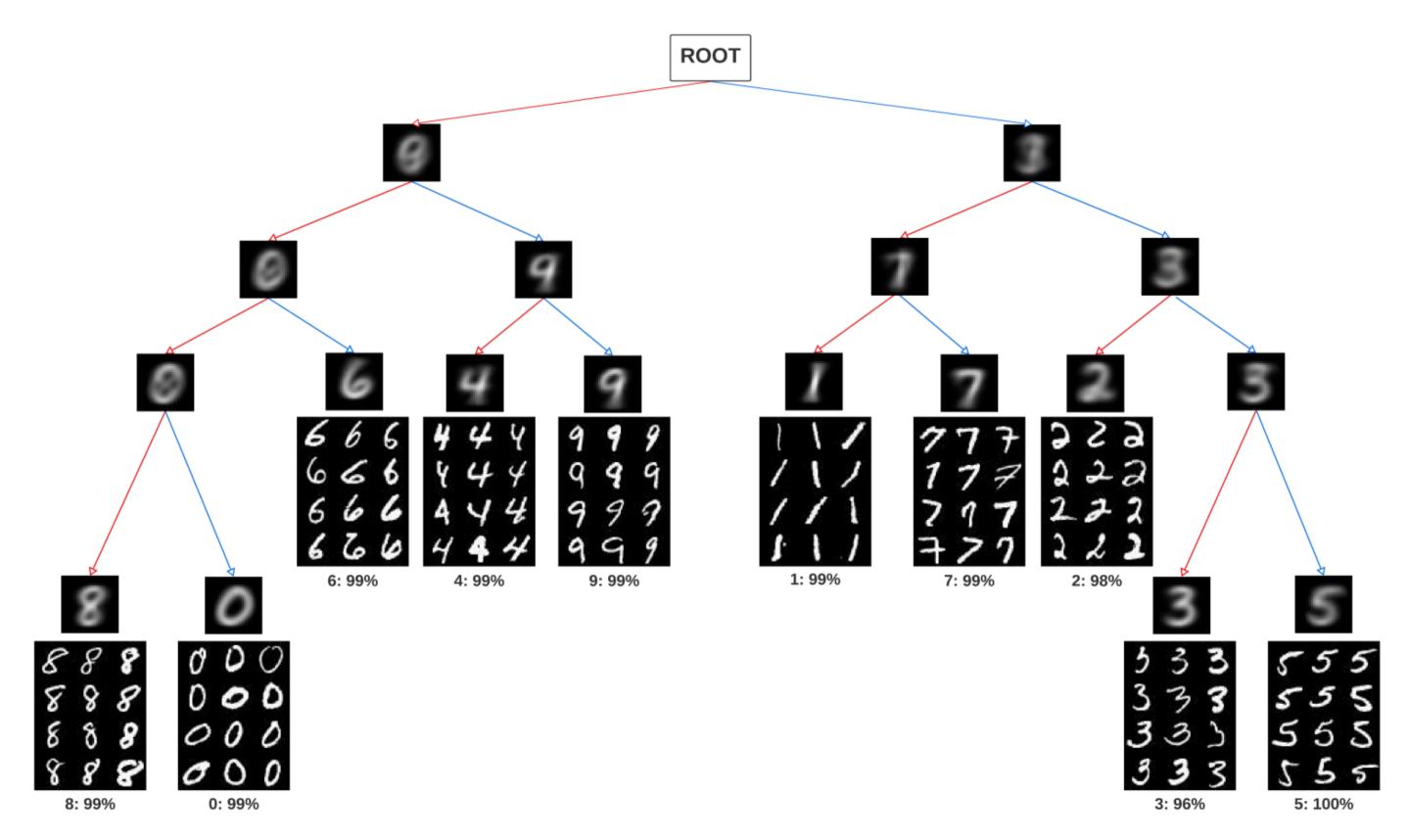
	NMI	ACC	ARI
CoHiLoss	0.567	0.569	0.457
m CoHiLoss + R1	0.629	0.726	0.549
${ m CoHiLoss} + { m R1} + { m R2}$	0.767	0.84	0.72
CoHiClust w/o pre-training	0.59	0.657	0.50

Table 5: Comparison with agglomerative clustering trained on the representation generated by the self-supervised learning model.



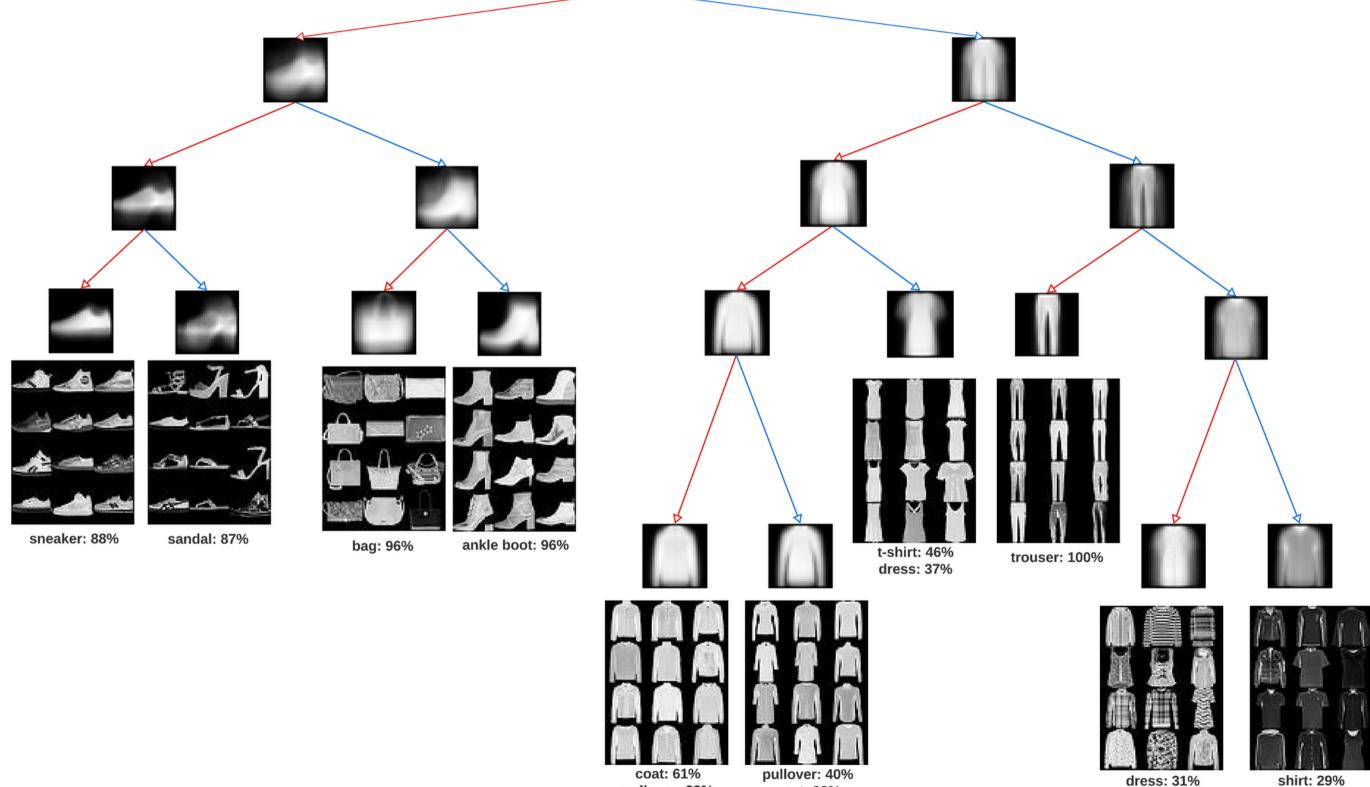
Comparison to Agglomerative Clustering

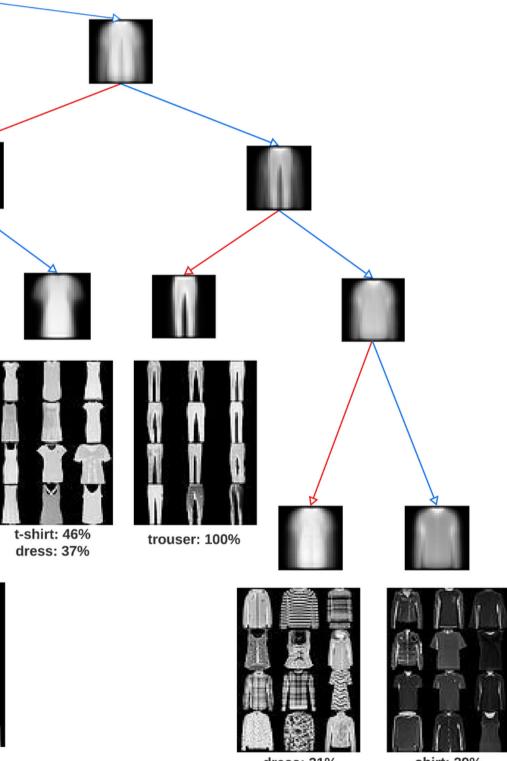
	NMI	ACC	ARI
Agglomerative clustering			
$\operatorname{CoHiClust}$	0.767	0.84	0.72



Cluster Hierarchy for MNIST

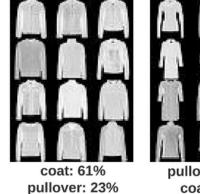
ROOT





t-shirt: 21%

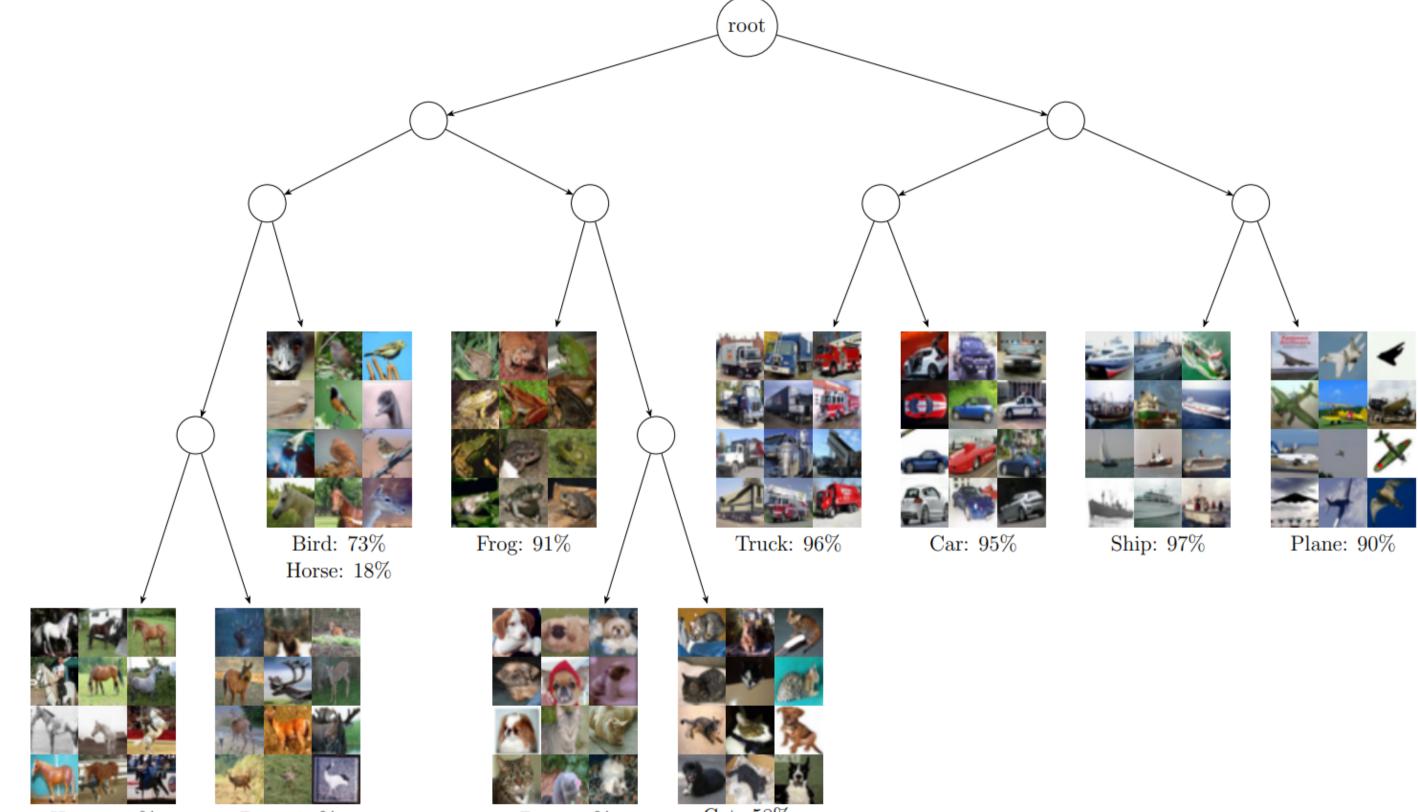
shirt: 18%



coat: 23% dress: 18%

Cluster Hierarchy for F-MNIST

shirt: 29% pullover: 27% coat: 20% t-shirt: 19%



Horse: 97%

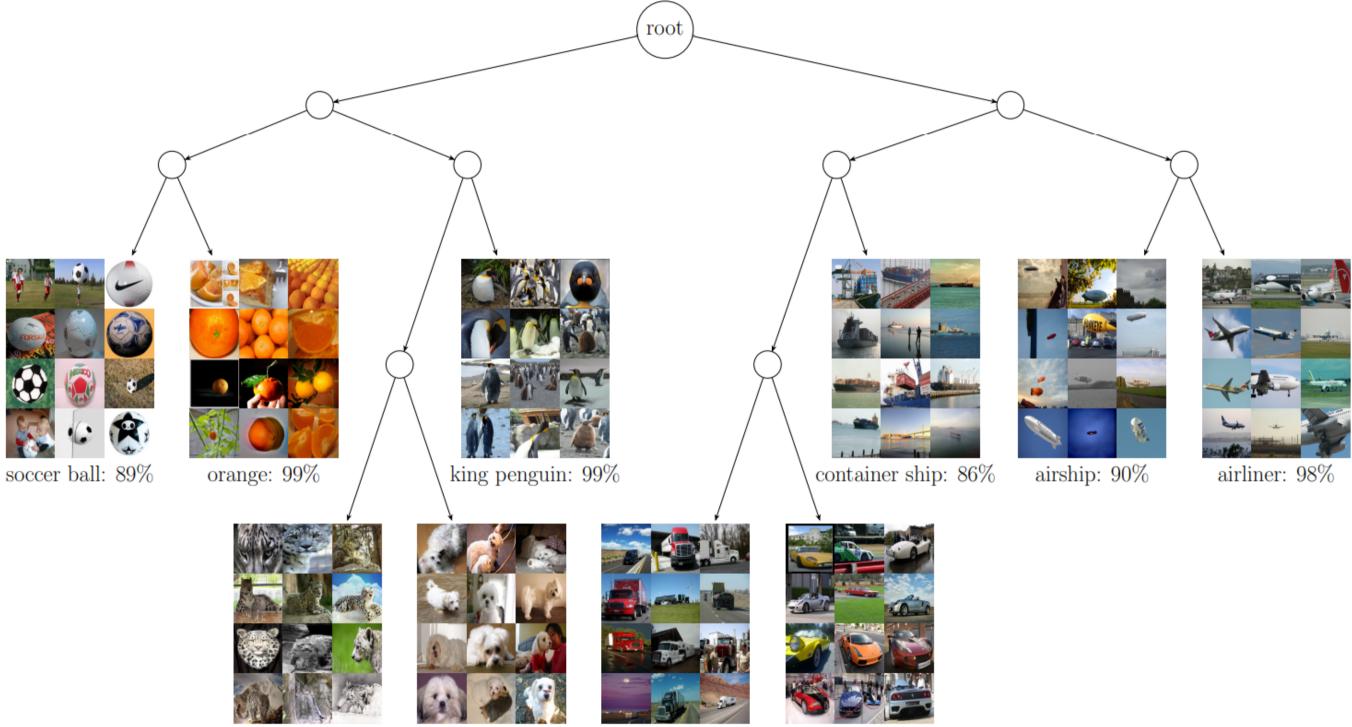
Deer: 78%

Dog: 58% Cat: 36%



Cat: 58% Dog: 33%

Cluster Hierarchy for CIFARIO



snow leopard: 99% maltese dog: 100% trailer truck: 97%

sports car: 99%

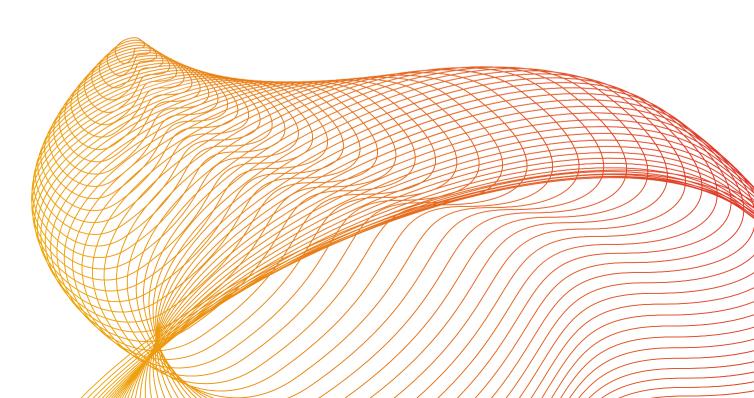
Cluster Hierarchy for ImageNetIO

Conclusions

- Our method provides significantly more information about the data than typical flat clustering models.
- Analysis performed on typical clustering benchmarks confirms that the produced partitions are **highly** similar to ground-truth classes.
- Our method generates a reasonable structure of clusters, which is consistent with human intuition and image semantics.

Future works

- Experiment with datasets that have more complex structures:
 - More classes.
 - More relationships between classes.
- Extend work beyond image datasets:
 - Medicine Molecular datasets.



Thank you SCAN TO READ THE PAPER

