
A MEDIATION LAYER FOR HETEROGENEOUS XML
SCHEMAS

Abdelsalam Almarimi1, Jaroslav Pokorny2

Abstract

This paper describes an approach for mediation of heterogeneous XML schemas. Such an approach

is proposed as a tool for XML data integration system. A global XML schema is specified by the

designer to provide a homogeneous view over heterogeneous XML data. An XML mediation layer is

introduced to manage: (1) establishing appropriate mappings between the global schema and the

schemas of the sources; (2) querying XML data sources in terms of the global schema. The XML

data sources are described by XML Schema language. The former task is performed through a

semi-automatic process that generates local and global paths. A tree structure for each XML

schema is constructed and represented by a simple form. This is in turn used for assigning indices

manually to match local paths to corresponding global paths. By gathering all paths with the same

indices, the equivalent local and global paths are grouped automatically, and an XML Metadata

Document is constructed. An XML Query Translator for the latter task is described to translate a

global user query into local queries by using the mappings that are defined in the XML Metadata

Document.

1. Introduction

XML [11] is becoming the standard format to exchange information over the internet. The
advantages of XML as an exchange model, such as rich expressiveness, clear notation, and
extensibility, make it the best candidate for supporting the integrated data model. Tools and
infrastructures for data integration are required due to the increasing number of distributed
heterogeneous data sources on-line.

However, modern business often needs to combine heterogeneous data from different data sources.
Therefore, tools are needed to mediate between user queries and heterogeneous data sources to

1 Czech Technical University, FEL, Department of Computers, Karlovo nam 13, Praha 3, Czech Republic; (email:
belgasem@cslab.felk.cvut.cz)
2 Charles University, MFF, Department of Software Engineering, Malostranske nam. 25, Praha 1, Czech Republic;
(email: pokorny@ksi.ms.mff.cuni.cz)

translate such queries into local queries. As the importance of XML has increased, a series of
standards has grown up around it, many of which were defined by the World Wide Web
Consortium (W3C). For example, XML Schema language [13,14,15] provides a notation for
defining new types of XML elements and XML documents. XML with its self-describing
hierarchical structure and the language XML Schema provide the flexibility and expressive power
needed to accommodate distributive and heterogeneous data. At the conceptual level, they can be
visualized as trees or hierarchical graphs.

Regardless the used schema description language, each schema integration process involves three
main stages: conflict analysis, conflict resolution, and schema merging. During conflict analysis,
differences in the schemas are identified. In the second stage the conflicts are resolved. Finally, the
schemas are merged into a single global schema using the decisions made during the previous stage.
In this context, it is necessary to resolve several conflicts caused by the heterogeneity of the data
sources with respect to data model, schema or schema concepts. Therefore, the mapping between
entities from different sources representing the same real-world objects has to be defined. The main
difficulty is that the data at different sources may be represented in different formats and in
incompatible ways. For example, the bibliographical databases of different publishers may use
different formats of authors' or editors' names or different units of prices. Moreover, the same
expression may have a different meaning, and the same meaning may be specified by different
expressions. To integrate or reconcile schemas we must understand how they correspond. If the
schemas are to be integrated, their corresponding information should be reconciled and modeled in
one consistent way.

This paper mainly refers to the problem of integrating heterogeneous XML data sources. We
propose a method to combine and query XML documents through a mediation layer. Such a layer is
proposed to describe the mappings between global XML schema and local heterogeneous XML
schemas. It produces a uniform interface over the local XML data sources and provides the required
functionality to query these sources in a uniform way. It involves two important units: the XML
Metadata Document (XMD) and the Query Translator. The XMD is an XML document containing
metadata, in which the mappings between global and local schemas are defined. The XML Query
Translator which is an integral part of the system is introduced to translate a global user query into
local queries by using the mappings that are defined in the XMD.

The rest of the paper is organized as follows. The next section presents the related work. Section 3
introduces the architecture of the XML data integration system. In section 4 we present XML
schema processing. The mediation process of XSDs is introduced in section 5. Section 6 describes
the query translator unit. Finally, we conclude the paper.

2. Related work

Data integration has received significant attention since the early days of databases. In the recent
years, there have been several works focusing on heterogeneous information integration. Most of
them are based on common mediator architecture [6]. In this architecture, mediators provide a
uniform user interface to views of heterogeneous data sources. They resolve queries over global
concepts into subqueries over data sources. Mainly, they can be classified into structural approaches
and semantic approaches.

In structural approaches, local data sources are assumed as crucial. The integration is done by
providing or automatically generating a global unified schema that characterizes the underlying data
sources. On the other hand, in semantic approaches, integration is obtained by sharing a common

ontology among the data sources. According to the mapping direction, the approaches are classified
into two categories: global-as-view and local-as-view [9]. In global-as-view approaches, each item
in the global schema is defined as a view over the source schemas. In local-as-view approaches,
each item in each source schema is defined as a view over the global schema. The local-as-view
approach better supports a dynamic environment, where data sources can be added to the data
integration system without the need to restructure the global schema.

There are several well-known research projects and prototypes such as Garlic [8], Tsimmis [7],
MedMaker [17], and Mix [4] are structural approaches and take a global-as-view approach. A
common data model is used, e.g., OEM (Object Exchange Model) in Tsimmis and MedMaker. Mix
uses XML as the data model; an XML query language XMAS was developed and used as the view
definition language there. DDXMI [16] (for Distributed Database XML Metadata Interface) builds
on XML Metadata Interchange. DDXMI is a master file including database information, XML path
information (a path for each node starting from the root), and semantic information about XML
elements and attributes. A system prototype has been built that generates a tool to do the metadata
integration, producing a master DDXMI file, which is then used to generate queries to local
databases from master queries. In this approach local sources were designed according to DTD
definitions. Therefore, the integration process is started from the DTD parsing that is associated to
each source.

Many efforts are being made to develop semantic approaches, based on RDF (Resource Description
Framework) and knowledge-based integration [3]. Several ontology languages have been developed
for data and knowledge representation to assist data integration from a semantic perspective, such
as Ontolingua [1]. F-logic [11] is employed to represent knowledge in the form of a domain map to
integrate data sources at the conceptual level. An ontology based approach [5] is one from many
other researches which use ontologies to create a global schema

We classify our system as a structural approach and differ from the others by following the local-as-
view approach. The XML Schema language is adopted in our work instead of DTD grammar
language, which has limited applicability. While only simple cases of heterogeneity conflicts among
elements were handled in the paper [2], this work involves more features of XML schema
components; we handle more mapping cardinality cases involving attributes in which the core
purpose is to provide more information about the elements.

3. System architecture overview

The architecture of the data integration system is presented in Figure 1. The data sources that we are
interested in are XML documents satisfying different XML schemas. The main component of the
system is the mediation layer, which comprises the XML Metadata Document (XMD) and the
Query Translator.

The XMD is an XML document containing metadata, in which the mappings between global and
local schemas are defined. The main objective is that when a global query over the global XML
schema is posed, it is automatically translated by the Query Translator unit to subqueries, called
local queries, which fit each local source format using the information stored in XMD. A GUI tool
is also involved, which is a simple form used to simplify the mapping process among schemas.

Figure 1. Data Integration System Architecture.

4. XML schema processing

The XML schema is itself an XML document, which we denote as XSD (XML schema document).
It is a sequence of components where each component is an attribute, or an element or a simple type
or complex type. The JDOM API is used for reading XSDs in memory.

4.1. XSD modeling

We model XSD as a tree structure whose nodes are components of the corresponding local sources.
Each component corresponds to the occurrence of a tag, to the occurrence of an attribute, to the
content of tag, and so on. Here, we only consider acyclic XML schemas with attributes. To clarify
our approach, we introduce an example in which three publishers' database sites are used. Our
objective is to create a global view over these heterogeneous sites to be used for query purposes.
The publishers are Addison Wesley (AW), Prentice Hall (PH), and Wiley. The structure of each site
was studied carefully and their XML schemas were defined. Although AW, PH, and Wiley all
contain book information, the data structures are different. Let us assume that the author
information of the global schema is divided into first name and last name, while in the local sources
it is represented as full name. Also the price unit of the local sources is the dollar, while the global
schema uses the euro. In addition, the book format of AW is represented as a single element, while
in Wiley it is divided into two elements: CoverType and Pages.

We present in Figure 2 a part of the tree structures of the schemas that are used in the example. In
this work, the process of constructing the global schema is not automated. The global XML schema
is specified by the designer, and the basic notions in the domain are described.

 Figure 2. A part of the tree structure for XSDs.

4.2 Extracting XSD components

JDOM is a tree-based, pure Java API for parsing, creating, and manipulating XML documents. It
provides a full document view with random access. Once a document has been loaded into memory,
whether by creating it from scratch or by parsing it from a stream, it can be easily processed by
JDOM. Thus the entire tree of XSD is available at any time. In fact, JDOM itself does not include a
parser. Instead it depends on a SAX parser [10], which can be used to parse documents and build
JDOM models from them. Once we have parsed an XSD, a JDOM tree model (a document
object) is formed which contains the entire components of the XSD. Figure 3 shows an example
of an object tree structure. In this model, each component is represented by its name, value, and
type, respectively. In turn, we need to search such a structure and extract out the components that
we are interested in. Let ELEMENTS and ATTRIBUTES be a set of elements and attributes,
respectively, of the document object. Formally, we introduce a function:

CHILD: COMPONENT →℘(COMPONENT),

where COMPONENT = ELEMENTS ∪ ATTRIBUTES, which assigns a multiset of child
components to each component in an XSD1. Basically, the CHILD function is founded to
materialize the XSD components that are needed. In turn, it can be navigated to generate a unique
path for each node starting from the root.

The process of extracting XSD components comprises the following steps:

1. A JDOM tree model is formed for each XSD.
2. For each XSD object, the value of each components name (exclude the name and type) is

extracted and a new tree data structure x is constructed.
3. A unique number is assigned to each node of x to resolve naming conflicts.
4. A depth-first traversal is performed on x and the CHILD function is materialized.

1 In our implementation CHILD is realized by a JAVA 2 hash table assigning to a parent as key and its children as values.

Figure 4 shows the generated CHILD function (represented by a table) for AW source. We observe
that, e.g. for node AW 1, we obtain the associated set of its children (here represented as an array)
[Discipline 2, Curriculum 3, Course 4, Books 5].

 Figure 3.Document object structure for AW XSD.

 Figure 4. CHILD function table for source AW.

5. XSDs Mediation

In order to obtain local queries for a query issued against the global XML schema, the system must
identify the XML data sources concerning a given query. For this task, the XML Metadata
Document (XMD) is utilized as mediation to overcome the heterogeneity of data sources. XMD is
proposed to maintain the correspondence between the components of the XSDs. For each
component of the global schema, the objective is to keep the set of components having the same
meaning in the local schemas and the semantic function if it is needed. Actually, since the global
and the local schemas are trees, each node is identified by its path in the tree, called a global path
for a component of the global schema and a local path for the corresponding component of a local
schema. The relationship between a global path and a local path is assumed as a mapping. The
distinction between components and paths is important, because a component may occur several
times in an XSD structure with different meanings, while a path always identifies a unique

component. The correspondence among schemas is expressed through a set of mappings. These
mappings capture the heterogeneity of the various data sources.

5.1 Mapping cases between XSD components

According to the number of nodes that are involved in the global XSD and a local XSD, mappings
between their components are classified to One-to-One, One-to-Many, and Many-to-One. A
component can be an element or an attribute. Several mapping cases are investigated in which
conflicts may occur between components. In the next subsections, we describe some cases which
are demonstrated above in Figure 2.

One-element to Many-elements this case can occur when there is a component represented as one
element in the global XSD but as many elements in a local XSD. Hence, more than one element in a
local XSD holds the same index number. Therefore to resolve this conflict a concatenation
operation is needed for such a task. The <Format> in the global XSD is an example of this case.

Many-elements to One-element here more than one component in the global schema is
represented by one component in a local schema. The <FName> and <LName> in the global XSD
is an example, and a separate operation is needed.

One-attribute to One-element when a component is represented as an attribute in the global XSD
and as an element in a local XSD, then the attribute name is just replaced by its equivalent element
name.

One-attribute to One-attribute with a specific operation this is a case where a specific operation
is required to resolve a semantic conflict among two components. For example, a conversion
operation is needed to get the value of <@price> attribute in euro instead of dollars from the AW
source.

5.2 XMD generation

In general, the major difficulty of connecting the global XML schema and the local XML schemas
comes from the large number of data sources. Therefore, it is absolutely necessary to generate
mappings automatically. The designer interaction is necessary; two terms may refer to different
concepts and may not have the same meaning. Only a human at the present time is able to guarantee
the semantic consistency of such a mapping. Hence, we implement a simple form (GUI) as an
assistant tool for mapping generation. A part of a GUI is shown in Figure 6. The second column is
used for assigning a unique index number for the equivalence paths. The third column is used to
specify the function names which are needed to resolve heterogeneity conflicts by performing
specific operations.

The process of XMD generation comprises the following steps:
1. The generated CHILD table for each XSD is traversed to obtain a unique path for each

component of the XSD tree structure starting from the root.
2. A GUI is generated for each XSD.
3. Using the GUI for each XSD, a unique index number is assigned for the equivalent local and

global paths.
4. In the third column of the GUI, either a null value is specified in the case of one-to-one mapping

or the required function name is specified in other cases.

5. By collecting the same indices, the equivalent paths are grouped and the XMD document is
easily created.

The XMD structure with its XSD is shown in Figure 5. Components in the global XSD are called
source components <source>, while corresponding components in local XSDs are called destination
components <dest>. In our example there are three local sources. Thus, each <source> element is
followed by three <dest> elements. Moreover, XMD contains information about the required
functions which is represented by the <function> element if it is needed to perform a specific
operation for a specific <source> element.

Figure 5. A sample of an XMD XML document with its XSD.

Figure 6. A part of the GUI for Wiley.

6. Query translation process

After the generation of the XMD, queries posed on the global XML schema can be evaluated. We
developed a method to query the distributed heterogeneous XML data sources. A query translator
unit is implemented, which is an integral part of the mediation layer. Its function is to translate
global queries into queries suitable for the data sources. That is, if there is a correspondence
between the paths in the global and local XSDs. When a global user query is posed, first it is parsed,
then the XMD document is read, parsed by SAX, and the number of local sources is identified. The
CHILD function is also used for the query translation process. A CHILD table t is constructed for
the XMD, in which each <source> component value in XMD (global path) is represented as a key
and associated with its <dest> components’ values as values (local paths). Also <function>
components’ values in XMD are represented in t as values and their corresponding <source> value
as key. For each path in the global query (should be a <source> component in XMD), if there is a
non-empty value of the corresponding local components (<dest> component in XMD), then by
navigating the XMD document, the paths in that query are replaced by paths to the <dest> values to
get a local query. Otherwise, an empty query is generated for the corresponding path in the local
query, which means this query cannot be applied to such local source. Each (generated) local query
is sent to the corresponding local source engine, which will execute the query locally and return the
result to the global query.

Algorithm: Global query translation process
Input: global XML query q, global XSD, and XMD document
Output: local XML queries q1, q2…, qn
Step1: parse q;
Step2: read XMD, identify the number of local sources;
Step3: construct CHILD function t for XMD;
 // source components as keys and destination components as values.
Step4: for each global path ge in q do

 materialize t;
 for each source Si in t having the corresponding local path le to ge do

 generate local query qi for the first occurrence; //only once
 for each ge whose <function> value is not null
 generate the required function operation

 endfor
 replace ge by le in qi;
 endfor
 endfor

Step5: execute the generated local queries locally.

7. Conclusion

In this paper, we have described an approach for resolving structural and semantic conflicts of
heterogeneous XML data. We used XML Schema language for defining the XML data sources.
A mediation layer is introduced to maintain the mappings among global and local XML schemas.
Such layer consists of two main parts: the XMD and the Query Translator. The tree of each XML
schema is constructed automatically and represented by a simple form to be used as a tool for
assigning index numbers to all XSD component paths. A unique index number is assigned to nodes
with the same meaning in order to resolve conflicts. The same index numbers are collected to
generate each global path with its corresponding local paths. Then, the XMD is generated. Also, we
have presented the second part of the mediation layer, the Query Translator. It acts to decompose
global queries into a set of subqueries. A global query from an end-user is translated into local
queries for XML data sources by looking up the corresponding paths in the XMD. Java 2, JDOM,
JavaCC, and the Java servlet server were used as tools for the prototype implementation of this
proposal.

Our implementation is still early naive prototype; many issues remain to be investigated. In the
future, we plan to involve more features of XML Schema. For example, the current prototype does
not support paths that contain wildcards. Removing redundancy will be also considered.

Acknowledgements. This work was supported in part by the National programme of research
(Information society project 1ET100300419).

References

[1] FARQUHAR, A., FIKES R, and RICE J., The Ontiliqua Server: A tool for Collaborative Ontology Construction,

in: International Journal of Human-Computer Studies, 1997, pp. 707-728.
[2] ALMARIMI, A., and POKORNY, J., Querying Heterogeneous XML data, in: Proc. on 6th Int. Baltic Conf.

BalticDB&IS 2004, Riga, Latvia, pp. 177-191.
[3] LUDASCHER, B., GUPTA, A., and MARTONE, M. E., Model-based Mediation with Domain Maps, in: Proc. of

Int. Conf. on Data Engineering, 2001, pp. 81-90.
[4] BARU, C., GUPTA, A., LUDASCHER, B, MARCIANO, R., PAPAKONSTANTINU, Y., VELIKHOV, P., and

CHU, V., XML-Based Information Mediation with MIX, in: Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, 1999, pp. 597-599.

[5] HAKIMPOUR, F., GEPPERT, A., Resolving semantic heterogeneity in schema integration: An ontology base
approach, in: Chris Welty and Barry Smith (eds.), Proc. of Int. Conf. on Formal Ontologies in Information Systems,
ACM Press, October 2001.

[6] WIEDERHOLD, G., Mediators in the Architecture of Future Information System, in: IEEE Computer Magazine,
Vol. 25, No. 3, March 1992, pp. 38-49.

[7] ULLMAN, J., Information Integration Using Logical Views, in: Proc. of the Int. Conf. on Database Theory, 1997,
pp. 19-40.

[8] HAAS, L., KOSSMAN, D., WIMMERS, E., and YOUNG J., Optimizing Queries across Diverse Data Sources, in:
Proc. of 23rd Int. Conf. On Very Large Databases, Athens, Greece, 1997, pp. 276-285.

[9] LENZERINI, M., Data Integration: A Theoretical Perspective, in: Proc. of the ACM Symposium on Principles of
Database Systems, Madison, Wisconsin, USA, June 2002, pp. 233-246.

[10] SAX 1.0: The Simple API for XML. http://www.perfectxml.com/wp/3110_Chapter06/contents.htm
[11] MAY, W., A Rule-Based Querying and Updating Language for XML, in: Proc. of the Workshop on Databases and

Programming Languages, Springer LNCS 2397, 2001, pp. 165-181.
[12] W3C Consortium: Extensible Markup Language (XML). http://www.w3.org/TR/2000/REC-xml
[13] W3C Consortium: XML Schema Part 0 : Primer. http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
[14] W3C Consortium: XML Schema Part 1: Structures. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.
[15] W3C Consortium: XML Schema Part 2: Datatypes. http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.
[16] NAM Y., GOGUEN, J., WANG, G., A Metadata Integration Assistant Generator for Heterogeneous Distributed

Databases, in: Proc. of the Confederated International Conferences DOA, CoopIS and ODBASE, Irvine CA,
October 2002, LNCS 2519, Springer, pp. 1332-1344.

[17] PAPAKONSTANTINOU, Y., GARCIA-MOLINA, H., ULLMAN, J., MedMaker: A Mediation System Based on
Declarative Specifications, in: Proc. of the IEEE Int. Conf. on Data Engineering, New Orleans, LA, February 1996,
pp. 132-141.

