
FROM XML SCHEMA TO OBJECT-RELATIONAL
DATABASE – AN XML SCHEMA-DRIVEN MAPPING

ALGORITHM

Irena Mlynkova, Jaroslav Pokorny
Charles University, Faculty of Mathematics and Physics, Department of Software Engineering

Malostranske nam. 25, 118 00 Prague 1, Czech Republic
{mlynkova,pokorny}@ksi.ms.mff.cuni.cz

ABSTRACT

Since XML becomes a crucial format for representing information, it is necessary to establish techniques for managing
XML documents. A possible solution can be found in storing XML data in (object-)relational databases. For this purpose
most of the existing techniques often exploit an XML schema of the stored XML data, usually expressed in DTD. But the
more complex today’s applications are, the more insufficient the DTD becomes and the necessity to use XML Schema
language becomes more essential.

The paper proposes an algorithm for mapping XML Schema structures to an object-relational database schema
(defined by the SQL:1999 standard) using a (modified) DOM interface and an algorithm for storing the valid XML data
into relations of the resulting schema. The main aim is to exploit object-oriented features XML Schema has and the
advantages of object-relational databases and to preserve the structure as well as semantic constraints of the source
schema in the target schema.

KEYWORDS

XML Schema transformation, object-relational database, mapping algorithm, DOM graph

1. INTRODUCTION

Recently XML (Bray et al., 2000) quickly becomes a key format for representing and exchanging
information. But the growing usage of XML technologies brings an essential demand for effective
management of XML documents and querying the data. A possible solution can be found in storing XML
data in (object-)relational ((O)R) database systems. This idea results especially from many database features
(e.g. query languages, schemes, programming interfaces, etc.) XML technologies include. In addition,
connecting XML and (O)RDBMS enables to provide XML with missing database mechanisms (e.g. indexes,
transactions, multi-user access, etc.).

Nowadays, there are several techniques for managing XML data using (O)RDBMS, whereas most of
them exploit an existing XML schema1 of the stored XML documents, usually expressed in DTD. The
popularity of DTD results from its simplicity and from (usually) satisfactory expressive power. But as the
requirements for exact expression of the allowed structure of XML documents grow, the DTD becomes more
insufficient and the necessity to use W3C recommended XML Schema (Thompson et al., 2001; Biron &
Malhotra, 2001) becomes more essential. Although XML Schema is much more complex and thus can seem
to be difficult for learning, it contains many useful features (e.g. simple and complex data types, user-defined
data types, precisely defined numbers of occurrences, etc.) that DTD lacks and thus gives the users more
powerful tool.

This paper proposes an algorithm for mapping XML Schema structures to OR database schema defined
by the SQL:19992 standard (Melton & Simon, 2002; Melton, 2003). The choice of the type of the target

1 It is necessary to distinguish between words "XML schema" (i.e. schema of XML documents expressed in any language, e.g. DTD,
XML Schema, etc.) and "XML Schema" (i.e. one of the languages).
2 Latterly the SQL:2003 standard is at disposal. Except for few side points it does not differ from SQL:1999 in considered features.

schema results from many object-oriented features XML Schema has (e.g. user-defined data types,
inheritance, substitutability, etc.) and the existence of corresponding OR elements for most of them. The
main aim of the algorithm is to preserve the structure as well as semantic constraints of the source XML
schema in the target OR schema and to exploit the advantages of OR features (i.e. user-defined data types,
typed tables, references, nesting, etc.). The proposed algorithm also exploits another XML technology – the
DOM programming interface (Wood et al., 1998). The idea is based on the fact, that XML schema expressed
in XML Schema language is at the same time an XML document and thus can be processed using the DOM
interface as well. For the purpose of the mapping algorithm a modification of the DOM tree, so-called DOM
graph, is defined.

The paper is structured as follows: Section 2 briefly sums up the related works and the basic
characteristics of the proposed algorithm. Section 3 describes the algorithm itself in detail. Section 4
introduces its prototype implementation called XMLSchemaStore and presents an example of the storage
strategy. Finally, conclusions and future works are provided in Section 5.

2. RELATED WORKS

As mentioned above, there is a significant amount of techniques for managing XML data using (O)R
databases. Generally these techniques can be classified according to several different criteria.

The basic classification is obviously related to dividing XML documents according to their content,
structure, and supposed use into data-centric and document-centric (Bourret, 2003). The methods can be then
classified according to the type of documents for which they were primarily designed. Most of the existing
ones focus on data-centric documents with few document-centric extensions (e.g. preserving the sibling order
of elements, preserving mixed-content elements, etc.).

Another classification (Amer-Yahia & Fernandez, 2001) results from the basic ideas of the mapping
methods and consists of three classes – generic, schema-driven and user-defined. Generic methods do not use
any schema of the stored documents and enable to store any XML document regardless its structure. On the
contrary, schema-driven methods are based on an existing XML schema of the stored documents, that is
mapped to an (O)R database schema, into whose relations the data from valid XML documents are then
stored. Finally, user-defined methods, which are used mostly in commercial systems, are based on user-
defined mapping.

Schema-driven mapping methods can be further divided either according to the source schema (i.e. DTD,
XML Schema, etc.) or the target schema (i.e. relational or OR). From another point of view, these methods
can be divided into so-called fixed and flexible (Amer-Yahia & Fernandez, 2001). Fixed methods do not use
any other information than the source schema itself and the mapping is straightforward. On the other hand,
flexible methods use additional information (e.g. query statistics, element statistics, etc.) and focus on
creating an optimal schema for a certain application.

A more comprehensive discussion and overview of the existing methods can be found in Mlynkova &
Pokorny, 2003.

The proposed algorithm belongs to the class of fixed schema-driven mapping algorithms. As was already
mentioned the source schema is expressed in XML Schema, the target schema is OR. Much like the most of
existing methods, the algorithm is primarily designed for data-centric XML documents, but also includes
several document-centric extensions. Despite the fact, that the number of existing techniques is high, the
proposed algorithm brings several not very common ideas – the focus on complex XML Schema structures
(especially their object-oriented features and the semantic constraints), the exploitation of OR features (in
this case user-defined types, nesting and references) and modelling XML schema by the DOM graph.

3. FROM XML SCHEMA TO OBJECT-RELATIONAL SCHEMA

This section describes the whole mapping algorithm in detail. First, the mapping rules for XML Schema
structures are summed up and briefly discussed. Second, the auxiliary modification of the DOM tree – the
DOM graph – is formally defined and its features are discussed. Finally, the mapping algorithm based on the
DOM graph and the algorithm for storing XML data are described.

3.1 Mapping rules

The mapping rules for particular XML Schema structures are established with respect to preserving the
structure and semantic constraints of the source XML schema in the target OR schema. They are summed up
in Table 1, the algorithm for creating the OR schema, which follows the rules, is described in Section 3.3.

Table 1. Overview of the mapping rules

XML Schema item Object-relational mapping

Single-valued
A corresponding SQL simple type (e.g. TIMESTAMP for dateTime,
VARCHAR for string, etc.), eventually with corresponding integrity
constraint (e.g. CHECK (Column > 0) for positiveInteger, etc.) Built-in

simple type
Multi-valued An array of corresponding SQL simple types (e.g. VARCHAR ARRAY[N]

for NMTOKENS, etc.)

Restriction
An SQL simple type together with corresponding integrity constraint (e.g.
CHECK (LENGTH(Column) >= N) for minLength, CHECK
(Column IN [E1,...,En]) for enumeration, etc.)

List An array of corresponding SQL simple types

User-
defined
simple type
derived by

Union A sufficiently general SQL simple type, e. g. VARCHAR

Complex type An SQL user-defined type (UDT)3 Com consisting of attributes, which
correspond to complex type’s XML attributes and to its content type

Attribute An attribute of Com with corresponding simple type
Simple content An attribute of Com with corresponding simple type
Extension Inheritance of UDTs
Restriction Ignored – currently there is no possible mapping of this feature

Sequence of
elements

An auxiliary UDT Seq: Each item in the sequence is also mapped to its UDT
Item. The sequence-item relationship is mapped to an attribute of Seq, whose
type is determined according to the type of the item:
• Globally defined → according to the maximum occurrence of the item

either a reference or an array of references to Item (Instances of Item are
stored into a common typed table.)

• Locally defined with maximum occurrence of 1 → Item (Instances of
Item are stored into the typed column of Seq.)

• Locally defined with maximum occurrence > 1 → like globally defined
items with maximum occurrence > 1

The element-sequence relationship is mapped like the sequence-item
relationship, i.e. depending on the maximum occurrence and the type of the
whole sequence.

Set of elements Like in the previous case together with additional attributes for storing the
ordinal numbers of the elements

Choice of
elements

Using inheritance and substitutability: All UDTs of the OR schema are
derived from a common ancestor Anc. The choice of elements is mapped to a
UDT Choi having one attribute, whose type is a reference to Anc (without
the SCOPE constraint) and thus can refer to any UDT.

Content
type of
complex
type

Model group Like its content (The difference is, that model groups are defined globally
and thus are always stored into common typed tables.)

Element
A UDT corresponding to its type (Instances of the UDT are stored according
to the type of the element and its maximum occurrence either into a common
typed table or into a typed column of its parent element.)

Root element Like an element having a complex type without attributes, whose content
type corresponds to a choice of (globally defined) elements

3 The idea to use UDTs (in combination with user-defined mapping) was already exploited in DBMS Oracle9i Release 2. But the default
schema used there is relatively simple and more complex structures must be created just using the user-defined mapping.

As mentioned above, the proposed algorithm focuses on data-centric XML documents, but also include
two document-centric extensions – preserving the order of sibling elements and the mixed content of
elements. The sibling order is preserved partly naturally using arrays and their indexes4 (in case of multiple-
occurrence elements) and partly unnaturally using additional attributes(s) keeping the order information (in
case of set of elements). On the other hand, the mixed content is preserved by storing the mixed-content
elements as other elements and their text parts in a separate multi-valued property.

There are also XML Schema structures, which cannot be mapped at all or could be mapped just in special
cases. They include:

Identity constraints. Identity constraints (i.e. unique, key and keyref elements) can be considered as an
XML Schema generalization of (originally DTD) simple types ID, IDREF and IDREFS. Most of the present
DTD-driven algorithms map these types (or strictly speaking their features) to SQL keys and foreign keys.
But this mapping is not precise, since the DTD uniqueness refers to the whole XML document while the SQL
uniqueness just to one table. Thus an enough suitable mapping even of their generalization is impossible.

Wildcards. The idea of wildcards enables to store any kind of element or attribute at a certain place. Thus this
feature can be mapped only to an enough general SQL type (e.g. VARCHAR). But in this case a further
exploitation of the stored data is quite small or must be solved using any XML-aware text enhancements.

Substitution groups. Substitution groups can be considered as probably one of the most powerful tool among
all XML Schema structures. They can be mapped analogous to a choice of elements, but this mapping does
not express their features precisely.

Furthermore, there are few XML Schema structures, which have no significance for the structure of the
schema (i.e. notations and annotations) or whose mapping is not quite essential (i.e. external schemes).

3.2 DOM graph

As mentioned before, the proposed mapping algorithm, that follows the previously defined mapping rules, is
based on a modification of the DOM tree called DOM graph. The idea results from the fact, that XML
schema expressed in XML Schema language is at the same time an XML document and thus can be
processed using the DOM interface as well. This section contains a formal definition of the graph and a
discussion of its properties.

Definition 1. Let TDOM = (VT, ET) be an (undirected) DOM tree of the given XML schema. Let GlobT

type ⊆ VT
be a set of globally defined simple and complex types (i.e. simpleType and complexType element
nodes, which are direct subelements of schema root element node). Let GlobT

item ⊆ VT be a set of globally
defined elements, model groups, attributes, and attribute groups (i.e. element, group, attribute and
attributeGroup element nodes, which are direct subelements of schema root element node). DOM
graph corresponding to TDOM is a directed graph GDOM = (VG, EG), where

VG = VT and
EG = {(vx, vy) | {vx, vy} ∈ ET ∧ (element node vy is a subelement of element node vx)} ∪

{(vx, vy) | {vx, vy} ∈ ET ∧ (attribute node vy represents an attribute of element node vx)} ∪
{(vx, vy) | vx is base, type or itemType attribute node referencing to a node vy ∈ GlobT

type} ∪
{(vx, vy) | vx is ref attribute node referencing to a node vy ∈ GlobT

item}

The DOM graph hence consists of nodes of the original DOM tree and two kinds of edges – directed

edges of the original DOM tree and additional edges expressing the "direction" of the usage of globally
defined items or data types. An example of an XML Schema file is depicted in Figure 1, its DOM graph in
Figure 2. The solid lines (without ordering) correspond to edges of the original DOM tree; dash-and-dot lines
are the additional ones. The letters in parentheses express element (E) or attribute (A) nodes.

4 If the preserving of sibling order is not important, the new SQL:2003 type MULTISET can be used for unordered XML data.

<xs:schema xmlns:xs="http://w w w .w 3.org/2001/XMLSchema">

 <xs:element name="Staff">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Person" maxOccurs="1000">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>
 </xs:sequence>
 <xs:attribute name="OnHoliday" type="YesNo"
 use="required"/>
 <xs:attribute name="Note" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ForeName" type="xs:string"
 maxOccurs="5"/>
 <xs:element name="Surname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="YesNo">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Yes"/>
 <xs:enumeration value="No"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>
Figure 1. An example of an XML Schema file

xs:schema(E)

xs:element(E)
xs:element(E)

xs:complexType(E)

xs:sequence(E)

xs:element(E)

xmlns:xs(A)

name(A)

maxOccurs(A)

name(A) type(A)

xs:complexType(E)

xs:sequence(E)

name(A)

xs:simpleType(E)

xs:restriction(E)

xs:enumeration(E)

name(A)

base(A)

value(A)

xs:enumeration(E)

value(A)

 xs:element(E)

name(A) type(A)

xs:element(E)

xs:complexType(E)

xs:sequence(E)

name(A)

xs:element(E)

ref(A)
type(A)

name(A)

use(A)

xs:attribute(E)

type(A) name(A)

 xs:attribute(E)

maxOccurs(A)

Figure 2. An example of a DOM graph of the XML schema depicted in Figure 1

3.2.1 Cycles in the graph
The W3C XML Schema recommendation allows several kinds of cyclic definitions of elements. The cycles
rise from mutual usage of globally defined elements or complex types and result in cycles in the DOM graph.

So far, the SQL:1999 standard allows no cyclic definitions of UDTs. Nevertheless, certain kinds of cycles
would be probably included in future versions of the standard. On the other hand, some of the existing
(O)RDBMS support "natural" cyclic definitions of UDTs. For instance, DBMS Oracle9i Release 2 enables to
use so-called incomplete types, which can be considered as a forward declaration. An incomplete type is
defined without its content and can be used instead of the corresponding complete type (except for the
inheritance ancestor). Its definition is completed only when all necessary types exist.

Using incomplete types it is possible to process cycles in the DOM graph. Before processing the DOM
graph, an incomplete type is created for each globally defined complex type/element. The incomplete types
are then used instead of the corresponding complete types and their definitions are completed after all
necessary types exist. Since W3C XML Schema recommendation does not allow cycles among complex type
extensions, there is always at least one edge in each cycle, which does not represent the extension of complex
types and just this edge enables to "break" the cycle using an incomplete type.

3.3 Mapping algorithm

Using the above-defined structure of the DOM graph the mapping process becomes relatively simple and
obvious. It has two parts – creating the DOM graph and its processing. The result of the processing is an OR
schema, which consists of a set of typed tables "interconnected" using references. The algorithm can be
summed as follows:

Creating the DOM graph GDOM = (VG, EG):
Create a DOM tree TDOM = (VT, ET) of the given XML schema;
For each node vT ∈ VT do create the corresponding node vG ∈ VG;
For each (unordered) edge eT ∈ ET do create the corresponding (ordered) edge eG ∈ EG;
Let GlobT

type ⊆ VT and GlobT
item ⊆ VT be defined like in Definition 1;

Let GlobG
type = {vG | vG ∈ VG ∧ vG corresponds to vT ∈ GlobT

type} and GlobG
item = {vG | vG ∈ VG ∧ vG

corresponds to vT ∈ GlobT
item};

For each base, type, itemType or ref attribute node a ∈ VG referencing to node g ∈ GlobG
type

∪ GlobG
item do create the corresponding (ordered) e = (a, g) ∈ EG;

Processing the DOM graph GDOM:
Mark each v ∈ VG as unprocessed;
Let GlobG

elem ∈ VG be the set of globally defined elements;
For each v ∈ GlobG

type ∪ GlobG
elem do begin

Create its incomplete UDT;
Mark v as processed;

end
ProcessNode(schema root node ∈ VG);
For each v ∈ GlobG

type ∪ GlobG
elem with an incomplete UDT do create its complete UDT;

For each element, which is not mapped to a typed column do create a typed table (including
corresponding column integrity constraints);
For each reference (except for those corresponding to a choice of elements) or array of references do
create a corresponding SCOPE integrity constraint;

procedure ProcessNode(v ∈ VG)
Let Vchild be the set of child nodes of v;
For each vch ∈ Vchild do begin

If vch is marked unprocessed then ProcessNode(vch);
Else if (v, vch) ∈ EG expresses an extension of vch ∈ GlobG

type and vch has an incomplete UDT then
begin

ProcessNode(vch);
Create its complete UDT;

end
Else if v is a schema root node and vch has an incomplete UDT then ProcessNode(vch);

end
If v is marked unprocessed then process v according to the established mapping rules;
Mark v as processed;

The above-described order in which the SQL items of the target schema (i.e. UDTs, typed tables,

references and their constraints) are created is established so, that it follows the SQL rules and considers
possible cycles in the graph. If the DOM graph contains no cycles, the algorithm could be simplified.

3.4 Storing XML documents

This section describes the algorithm for storing the data from XML documents valid against the source XML
schema into relations of the target OR schema. It is based on traversing the DOM tree of the XML document
and creating the corresponding SQL constructors of the given data.

The algorithm can be summed as follows:
Create a DOM tree TDOM = (VT, ET) of the given XML file;
cv = StoreNode(root node v ∈ VT);
Use cv for storing the data into corresponding typed table;

function StoreNode(v ∈ VT):string

Let Vchild be the set of child nodes of v;
Let C = {ci | ci = StoreNode(vi); vi ∈ Vchild ∧ i = 1,...,|Vchild|} be a set of constructors of Vchild;
Create the constructor cv of the node v from ∀ c ∈ C;
If v is mapped to a reference or an array of references then begin

Use cv for storing the data into corresponding typed table;
Create a constructor cref of a reference to the stored data;
cv = cref;

end
Return cv;

The whole storage process is driven not only by the stored XML document, but also by auxiliary

information about the current OR schema (i.e. types of parent-child mapping, names of the tables, names of
the UDTs, structure of UDTs determining the constructors, etc.). This information is stored into auxiliary
tables during the mapping process.

4. PROTOTYPE IMPLEMENTATION

A prototype implementation of the proposed algorithm is called XMLSchemaStore (Mlynkova, 2003). It is
based on DBMS Oracle9i Release 2, which supports a lot of SQL:1999 OR features, especially those, which
were exploited in the proposed algorithm. As there are few syntactical differences between Oracle9i SQL and
SQL:1999 standard, the algorithm was slightly adapted to Oracle9i features. The features, which are not
supported in the system yet, were in XMLSchemaStore omitted.

The implementation enables:
• to create an OR schema according to a given XML schema using the proposed algorithm,
• to store any valid XML document into relations of the corresponding OR schema, and
• to process (a subset of) XML path queries over the stored XML data.
The last mentioned feature is not discussed here for the paper length. In short, the implemented algorithm

enables to map path queries over XML documents to SQL queries over the OR schema and to convert the
SQL result back to an XML document.

An example of an XML document valid against XML schema depicted in Figure 1 and its storage in the
resulting OR schema is depicted in Figure 3. The arrow keys represent references; the square brackets
represent arrays; the dot notation represents nested attributes.

5. CONCLUSION

This paper proposed an algorithm for mapping XML Schema structures to an object-relational database
schema and an algorithm for storing the valid XML data into the resulting relations. For the purpose of the
algorithm a modification of the DOM tree, so-called DOM graph, was defined to determine and at the same
time to simplify the mapping procedure. In contrast to currently existing methods, the algorithm focused on
object-oriented features XML Schema has and the advantages of object-relational databases.

Name

Seq.ForeName [5] Seq.Surname

Irena Mlynkova

Homer, Jay Simpson

Person

Seq.Name OnHoliday Note

No Raise salary!

Yes null

Staff

Seq.Person [1000]

<Staff>
 <Person OnHoliday="No" Note="Raise salary!">
 <Name>
 <ForeName>Irena</ForeName>
 <Surname>Mlynkova</Surname>
 </Name>
 </Person>
 <Person OnHoliday="Yes">
 <Name>
 <ForeName>Homer</ForeName>
 <ForeName>Jay</ForeName>
 <Surname>Simpson</Surname>
 </Name>
 </Person>
</Staff>

Figure 3. An example of an XML document and its storage in resulting OR schema

The algorithm is considered as a basis for future work, which should focus on optimalizations of the
created schema. First possible approach can be based on so-called flexible mapping methods (Bohannon et
al., 2002; Klettke & Meyer, 2000), which try to establish an optimal schema for a certain application. Second
possible approach can result from the necessity to determine a definition of a "good" XML schema (such as
e.g. normal forms for relations) and ways how to establish it. The reason is, that as there are no rules, which
define a "good" XML schema, a fixed mapping of a "bad" one can result in a "bad" relational schema as well.

ACKNOWLEDGEMENTS

This work was supported in part by the National programme of research (Information society project
1ET100300419).

REFERENCES

Amer-Yahia, S. and Fernandez, M., 2001. Overview of Existing XML Storage Techniques. AT&T Labs, Cambridge, UK.
Biron, P. V. and Malhotra, A., 2001. XML Schema Part 2: Datatypes. W3C Recommendation,

http://www.w3.org/TR/xmlschema-2/
Bohannon, P. et al., 2002. From XML Schema to Relations: A Cost-Based Approach to XML Storage. Proceedings of

ICDE Conference, San Jose, California, p. 64.
Bourret, R., 2003. XML and Databases. www.rpbourret.com
Bray, T. et al., 2004. Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation,

http://www.w3.org/TR/REC-xml/
Klettke, M. and Meyer, H., 2000. XML and Object-Relational Database Systems – Enhancing Structural Mappings Based

on Statistics. Informal Proceedings of WebDB Workshop, Dallas, Texas, pp 151 - 170.
Melton, J., 2003. Advanced SQL: 1999 – Understanding Object-Relational and Other Advanced Features. Morgan

Kaufmann Publishers, San Francisco, USA.
Melton, J. and Simon, A. R., 2002. SQL: 1999 – Understanding Relational Language Components. Morgan Kaufmann

Publishers, San Francisco, USA.
Mlynkova, I., 2003. XML Schema and its Implementation in Relational Databases. Master thesis, Charles University,

Prague, Czech Republic, http://kocour.ms.mff.cuni.cz/~mlynkova/doc/dip2003.pdf (In Czech)
Mlynkova, I. and Pokorny, J., 2003. XML in the World of (Object-) Relational Database Systems. Technical report

2003/8, Charles University, Prague, Czech Republic, http://kocour.ms.mff.cuni.cz/~mlynkova/doc/tr2003-8.pdf
Thompson, H. S. et al., 2001. XML Schema Part 1: Structures. W3C Recommendation,

http://www.w3.org/TR/xmlschema-1/
Wood, L. et al., 1998. DOM Level 1 Specification. W3C Recommendation, http://www.w3.org/TR/REC-DOM-Level-1/

