
Relational Databases with Ordered

Relations

RADIM NEDBAL, Institute of Computer Science, Academy of Sciences
of the Czech Republic, Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech
Republic, E-mail: radned@seznam.cz

Abstract

The paper1 deals with expressing preferences in the framework of the relational data model. Pref-
erences have usually a form of a partial ordering. Therefore the question arises how to provide the

relational data model with such an ordering.

Keywords: relational database model, preference, partial ordering, relational algebra operation,

aggregation function, arithmetic

1 Introduction

When retrieving data, it is difficult for a user of a classical relational database to
express various levels of preferences. Let us start with an illustrative and motivating
example.

Example 1.1 (Preferences represented by an ordering)
How could we express our intention to find employees if we have preference for those
who speak English, or at least German, or at worst any other germanic language?
At the same time, we may similarly have preference for Spanish or French speaking
employees to those speaking any other romanic languages. To sum up, we have the
following preferences:

A. Germanic languages:
1. English,
2. German,
3. other germanic languages.

B. Romanic languages:
1. Spanish of French,
2. other romanic languages.

These preferences can be formalized by an ordering, in a general case by a partial
ordering. The situation is depicted in the following figure. We represent the relation
R(NAME,POSITION, LANGUAGE) of employees as a table and the above pref-
erences by means of the standard Hasse diagram notation (see the following figure).

Marie is preferred to David as she speaks English and David speaks “just” German.
Analogically, Patrik is preferred to Andrea due to his knowledge of French. However
Patrik and David, for instance, are “incomparable” as we have expressed no preference
order between German and French. Similarly, Roman is “incomparable” to any other
employee as Russian is in preference relation with no other language. �

1The work was partially supported by the project 1ET100300419 of the Program Information Society (of the

Thematic Program II of the National Research Program of the Czech Republic) “Intelligent Models, Algorithms,

Methods and Tools for the Semantic Web Realization”

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–11 0000 c© Oxford University Press

2 Relational Databases with Ordered Relations

Dominik President English

Marie Manager English

David Manager German

Petr Manager Swedish

Adam Manager German

Filip Programmer Dutch

Martina Programmer English

Patrik Programmer French

Rudolf Programmer Italian

Ronald Programmer Spanish

Andrea Programmer Portuguese

Roman Programmer Russian

Dominik

Marie

Martina

David

Adam

Filip Petr

Patrik Ronald

Rudolf Andrea

Roman

The aim of this paper is to define and include semantics of (partial) ordering into
relational algebra operations. The resulting data model should provide users with the
most relevant data (according to their preferences).

2 The Relational Data Model

The relational data model is based on the mathematical term of a relation. A “table”
of a relational database corresponds to a relation and a row of a table is an element
of the corresponding relation. However, the relational data model consists not only
of the relations themselves, but it provides also operations on relations.

As a relation R is a set, we have all the classical set operations and on top of that
aggregation functions (unary operations returning a number) and arithmetic for
performing all the usual operations on numbers. The relational data model has been
originally defined with eight relational operations:

• Intersection (∩),
• Union (∪),
• Cartesian product (×),

• Difference (\),
• Projection (R[A]),
• Restriction (R(φ)),

• Join (./),
• Division (÷)

Some of the above operations are, however, not primitive [1] – they can be defined
in terms of the others. For instance, the intersection, the join, and the division can
be defined in terms of the other five. These five operations (union, cartesian product,
difference, projection, and restriction) can be then regarded as primitive ones, in the
sense that none of them can be defined in terms of the other four. Thus, a minimal
set of relational operations is the set consisting of, e.g., these five primitive operations
– the so called minimal set of relational algebra operations.

3 Operations on Ordered Relations

The ordering represents a new information. To handle this information, we need
appropriate operations. To maintain the same expressive power, we need operations
corresponding to those that we have for the traditional relational model. In the

Relational Databases with Ordered Relations 3

following, we consider an ordered pair

[R,≤R],

of a relation R with its preference relation (ordering) ≤R.

3.1 Relational algebra operations

Restriction R(φ) returns the relation
{
r ∈ R

∣∣ φ(r)
}

consisting of all tuples from a
given relation R that satisfy a specified condition φ.

Example 3.1 (Ordering on a restriction)

Dominik

Marie

Martina

David

Adam

Filip Petr

Patrik Ronald

Rudolf Andrea

Roman

R(POSITION = “Manager”)

Marie

David

Adam

Petr

Marie

David

Adam

Petr

We prefer Marie to David, Adam, and Petr and at the same time we also prefer David
and Adam to Petr as all these preferences hold in the original – input – relation. �

In the case of an ordered relation [R,≤R], we define:

[R;≤R](φ) = [R(φ);≤R
R(φ),

where

≤R
R(φ)= R(φ)×R(φ) ∩ ≤R

Projection R[C] returns a relation consisting of all tuples that remain as (sub)tuples
in a given relation after specified attributes have been eliminated.

Example 3.2 (Ordering on a projection)

Dominik

Marie
Martina

David

Adam

Filip Petr

Patrik Ronald

Rudolf Andrea

Roman

R[POSITION]

President

Manager

Programmer

President

Manager

Programmer

We prefer the president to the manager as all presidents (which is in our case the
unique element “Dominik”) are preferred to all managers (Marie, David Adam, Petr)
in the input ordering. However, we can not say anything about preference of the

4 Relational Databases with Ordered Relations

programmer and the manager as we can find a programmer that is preferred to a
manager and vice versa. Equally, we can not say anything about preference order of
the programmer and the president as there are programmers that are “incomparable”
to the president. �

In the case of an ordered relation [R,≤R], we define:

[R;≤R][C] =
[
R[C];≤R[C]

]
,

where

≤R[C]=
{
(pi, pj)

∣∣(∃ri, rj ∈ R)(ri[C] = pi ∧ rj [C] = pj) ∧
(∀ri, rj ∈ R)(ri[C] = pi ∧ rj [C] = pj ⇒ ri ≤R rj)

}
Union R1 ∪ R2 returns a relation consisting of all tuples appearing in either of the

specified relations.

Example 3.3 (Ordering on a union)
Let us consider two input relations [R1;≤R1], [R2;≤R2]. What will their union,
[R1;≤R1]

⋃
[R2;≤R2], look like? Clearly, we are looking for an ordering on R1 ∪R2.

First of all, we determine the preference order of the elements belonging to the
intersection of the input relations and of the elements belonging to the symmetric
difference of the input relations. The preference order is defined in compliance with
the preference orders of the input relations elements (cf. the following figure, e.g.
Dominik, Filip). If there is no preference order given between elements of a couple
in some of the input relations (Dominik, Roman), or the preferences are different, we
designate the preference of the couple elements as “incomparable” in the union.

This may seems to be paradoxical at first glance. However, realize we are looking
for the overall preference ordering. The condition that allows us to determine the
preference order of a pair of elements in the union occurs only when the preference
orders of these two elements are identical in both of the input relations. Under all
other circumstances, we postulate that we are unable to decide which one of the
elements of a pair of elements in the union has preference over the other.

Roman

Dominik

Marie

Martina

David

Adam

Filip Petr

⋃ Dominik

Patrik Ronald

Rudolf Andrea

Roman Filip

David

Adam

Martina

=

Dominik

Filip

David

Adam

Martina

Roman

Marie

Petr

Patrik Ronald

Rudolf Andrea

Relational Databases with Ordered Relations 5

To illustrate this, imagine that we are studying recommendations for hiring new
employees. We have received recommendations from independent subjects, and
we want to hire the most suitable employee. Incidentally, recommendations
mention the same pair of employees. While the first recommendation clearly
states the preference order of the candidates, the other one just lists arguments
for the candidates suitability. Unfortunately, we are not capable of determining
the preference order based on these arguments. Consequently, we are not able
to determine the overall preference order between the candidates. If we decide
for the candidate preferred to the other by virtue of the first recommendation,
we might get unconsciously in contradiction with the second recommendation.

After this first step of determining the preference order of the elements belonging
to the intersection of the input relations, we have to determine the preference order
of the couples in which one of the elements comes from the intersection and the
other one from the symmetric difference of the input relations. To be consistent
with the preference determined in the previous step, we have, with respect to the
transitivity property of the ordering, to drop “some” preference ordering between
couple of elements in the union and designate them as incomparable.

Thus we have to designate preference order of (Dominik, Rudolf) as incomparable,
otherwise the preference order of (Rudolf, Roman) and the transitivity property would
imply preference order of (Dominik, Roman), which is in contradiction with the pref-
erence designated in the first step. Recall that (Dominik, Roman) were designated as
incomparable. �

In the case of two ordered relations [R1,≤R1], [R2,≤R2], we define:

[R1;≤R1]
⋃

[R2;≤R2] = [R1 ∪R2;≤R1∪R2]

where

≤R1∪R2=

max
{

R′
∣∣∣((≤R1≤R′) ∪ (≤R′≤R1)

)
⊆ (≤R1 \ R2 ×R2 ∪ (≤R1 ∩ ≤R2)

}⋃
max

{
R′

∣∣∣((≤R2≤R′) ∪ (≤R′≤R2)
)
⊆ (≤R2 \R1 ×R1 ∪ (≤R1 ∩ ≤R2)

}
Difference R1 \ R2 returns a relation consisting of all tuples appearing in the first

relation R1 and not in the second relation R2.
Example 3.4 (Ordering on a difference)
Again, consider two input relations. The difference ordering is the restriction of the
input ordering on the the difference of the input relations.

Dominik
Marie
Martina

David

Adam

Filip Petr

–

Patrik Ronald

Rudolf Andrea

David

Adam

=

Dominik

Marie

Martina

Filip Petr �

6 Relational Databases with Ordered Relations

In the case of ordered relations [R,≤R1], [R2,≤R2], we define:

[R1;≤R1] \ [R2;≤R2] = [R1 \R2;≤R1\R2]

where
≤R1\R2 = ≤R1 ∩ (R1 \R2)× (R1 \R2)

Cartesian product R1 ×R2 returns a relation consisting of all possible tuples that
are a combination of two tuples, one from each of the specified relations R1, R2.

Example 3.5 (Ordering on a cartesian product)
The output ordering is defined as an ordering of ordered pairs.

traditional

great

excellent

bad poor

×

fast

slow

=

trad.,

fast

trad.,

slow

great, fast

excell., fast

bad,

fast

great, slow

excell., slow

poor,

fast

bad,

slow

poor,

slow

�

In the case of ordered relations [R,≤R1], [R2,≤R2], we define:

[R1;≤R1]× [R2;≤R2] = [R1 ×R2;≤R1×R2]

where
≤R1×R2=

{(
(r1, r2), (r′1, r

′
2)

)∣∣∣(r1, r
′
1) ∈ ≤R1 ∧ (r2, r

′
2) ∈ ≤R2

}
, (3.1)

which is the direct product definition.

3.2 Aggregation Functions

Example 3.6 (Count on an ordered relation)
Again, let us start with the following illustrative and motivating example depicted on
the next page. Consider the ordered pair [R,≤R], i.e. a relation R with preference
represented as the ordering ≤R: Marie ≤R Dominik, Petr ≤R Dominik, David ≤R

Dominik, . . . Marie ≤R Petr, Petr ≤R Marie, . . . Rudolf ≤R Patrik etc. Notice that
not all the elements need to be in the relation ≤R, i.e. some of the elements of R are
“incomparable” with respect to ≤R, e.g. Patrick and Roman.

• Next, let us construct equivalence classes R/≡ containing the elements that we
prefer equally: {Dominik}, {Marie, Petr}, {David,Adam, F ilip} etc.

• We can then induce an ordering ≤R/≡ on R/≡ of classes of equally preferred
elements, which is depicted in the following figure on the left hand side.

Relational Databases with Ordered Relations 7

[R/ ≡;≤R/≡]

Dominik

Marie,

Petr

David,

Adam,

Filip

Martina,

Roman

Patrik

Rudolf,

Andrea

[Pmax(R/ ≡);≤Pmax(R/≡)]

Dominik , Patrik

Dom., Pat.,

Marie, Petr

Dom., Pat.,

Dav., Adam,

Filip

Dom., Pat.,

Rud., Andr.

Dom., Pat.,

Marie, Petr,

Dav., Adam,

Filip

Dom., Pat.,

Marie, Petr,

Rud., Andrea

Dom., Pat.,

Dav., Adam,

Filip, Rud.,

Andrea

Dom., Pat., Marie, Petr, Dav.,

Adam, Filip, Martina, Roman

Dom., Pat., Marie, Petr, Dav.,

Adam, Filip, Rud., Andrea

Dom., Pat., Marie, Petr, Dav., Adam,

Filip, Rud., Andrea, Martina, Roman

2

4 5 4

7 6 7

9 9

11

[c|R|;≤CountR]

2

4 5

6 7

9

11

• Next, following the definitions (3.2) and (3.3) (see next page), we get the ordered
pair

[Pmax(R/ ≡);≤Pmax(R/≡)]

This ordered pair expresses the fact that, first of all, we are interested in the
most preferred elements. The less preferred elements are taken into consideration
gradually with respect to their preference rank. The principle is never to add
elements that are in the hierarchy of the input ordering below the elements that
we have not counted yet. The rationale behind this is that one always chooses the
best elements possible.
In this way, we get a lattice ordering of sets containing the maximal number of
elements with the preference higher or equal to a certain level.

• Finally, the count operation is performed, and using the definitions (3.4) and (3.5),
we get the resulting ordered pair [|̂R|;≤CountR].
The semantic of this final ordering can be seen on the couple of 4 and 7 for
instance: As we have got 7 ≤CountR 4, we can conclude that for any set of 7
elements chosen as the most preferred ones, there is its subset containing 4, more
or equally preferred, elements. The elements with an equal preference are always
taken into account together. �

From the viewpoint of a formal description, we will consider in the following:

[R,≤R], ≤R is a relation of a preference on R,

8 Relational Databases with Ordered Relations

≤R is generally unsymmetrical pre-ordering on R as:

(≤R)0 ⊂ ≤R

≤R≤R = ≤R

R×R \ ≤R ∩ (≤R)−1 6= ∅

We can introduce a relation of equivalence ≡ on R:

[R;≡], ≡ = ≤R ∩ (≤R)−1

This equivalence induces a factorization, and thus we get a set [R/≡] of cosets Ra:

Ra = {r ∈ R|r ≡ a}

with induced ordering defined as:

(∀Ra, Rb ∈ R/≡)(Ra ≤R/≡ Rb ⇐⇒ a ≤R b)

Next, we can define a set Pmax(R/ ≡):

P(R/≡) ⊇ Pmax(R/ ≡) =
{

R̃ ⊆ R/ ≡
∣∣∣

(∀Ra ∈ R/≡)
(
(∀Rb ∈ R/≡)(Ra ≤R/≡ Rb ⇒ Ra = Rb) ⇒ Ra ∈ R̃

)
∧

(∀Ra ∈ R̃)(∀Rb ∈ R/≡)(Ra ≤R/≡ Rb ⇒ Rb ∈ R̃)
}

(3.2)

It is a set containing all the maximal elements of [R/≡,≤R/≡] and all the end stretches
of its own elements. Finally, we can define ordering ≤Pmax(R/≡) on Pmax(R/ ≡) as:(

∀R̃i, R̃j ∈ Pmax(R/ ≡)
)
(R̃i ≤Pmax(R/≡) R̃j ⇐⇒ R̃i ⊇ R̃j), (3.3)

which is in fact a lattice ordering. Thus we have defined the ordered pair:

[Pmax(R/ ≡);≤Pmax(R/≡)]

An aggregation function in the classical relational data model is a function:
P(R) → R (operating on sets and returning numbers). In the relational data model
with ordered relations, we define aggregation function Agg generally as follows:

Agg: [P(R);≤R] −→
{
[R;≤AggR′]

∣∣R′ ∈ P(R)
}
, where

(
∀R′ ∈ P(R)

)
(∀i, j ∈ R)

(
i ≤Agg(R′) j ⇐⇒(

∃R̃j ∈ Pmax(R′/≡)
)(

g(R̃j) = j ∧(
∀R̃i ∈ Pmax(R′/≡)

)(
g(R̃i) = i ⇒ R̃i ≤Pmax(R′/≡) R̃j

)))
, (3.4)

where
g : P(R) −→ R

is defined with respect to the specific aggregation function as:

Relational Databases with Ordered Relations 9

Count: [P(R);≤R] −→
{
[|̂R|;≤CountR′]

∣∣R′ ∈ P(R)
}

g :
{
Pmax(R′/≡) −→ |̂R|

∣∣R′ ∈ P(R)
}

g(R̃) =
∑

Ra∈R̃

|Ra| (3.5)

In the following, A stands for attributes of the relation R.

Max: [P(R);≤R] −→
{[

(−∞;max{r.A|r ∈ R}〉;≤MaxR′
]∣∣∣R′ ∈ P(R)

}
,

g :
{
Pmax(R′/≡) −→ (−∞;max{r.A|r ∈ R}〉

∣∣R′ ∈ P(R)
}

g(R̃) = max
{
r.A

∣∣∃Ra ∈ R′/≡ (r.A ∈ Ra ∧Ra ∈ R̃)
}

Min: [P(R);≤R] −→
{[
〈min{r.A|r ∈ R}; +∞);≤MaxR′

]∣∣∣R′ ∈ P(R)
}

,

g :
{
Pmax(R′/≡) −→ 〈min{r.A|r ∈ R}; +∞)

∣∣R′ ∈ P(R)
}

g(R̃) = min
{
r.A

∣∣∃Ra ∈ R′/≡ (r.A ∈ Ra ∧Ra ∈ R̃)
}

Sum: [P(R);≤R] −→
{
[R;≤SumR′]

∣∣R′ ∈ P(R)
}
,

g :
{
Pmax(R′/≡) −→ R

∣∣R′ ∈ P(R)
}

g(R̃) =
∑

∃Ra∈R′/≡(r.A∈Ra∧Ra∈R̃)

r.A,

Average: [P(R);≤R] −→
{
[R;≤AvgR′]

∣∣R′ ∈ P(R)
}
,

g :
{
Pmax(R′/≡) −→ R

∣∣R′ ∈ P(R)
}

g(R̃) =

∑
∃Ra∈R′/≡(r.A∈Ra∧Ra∈R̃) r.A∑

Ra∈R̃ |Ra|
,

10 Relational Databases with Ordered Relations

3.3 Arithmetic
Example 3.7 (Subtraction on ordered relations)
Let us consider two input relations PROGR(A,B) of programmers and managers
MAN(C,D) respectively. We are interested in their names (attributes A,C) and years
of practice (attributes B,D) only. The ordering reflects the preference based on their,
say, proficiency. The question is: “What is the difference of years of practice between
the most proficient programmers and managers?” We clearly need the arithmetic
operation of subtraction.

PROGR(A,B)

Dominik, 20

Marie,19
David, 16

Adam, 15

Martina, 14

Patrik, 15

Rudolf, 22

–

MAN(C,D)

Ronald, 6

Andrea, 11

=

PROGR×MANAGERS

20 - 6

19 - 6 20 -11
16 - 6

15 - 6

19 -11 14- 6
16 -11

15 -11

14-1115 - 6

22- 6 15 -11

22-11

14

13 9 10
9

8 8 5
4

39
16 4

11

PROGR[B]
\

MAN[D]

14 9

13 10 164

85 11

3

To get the result, we have to consider all the possible couples of programmers
and managers. The relation of these couples is ordered as cartesian product – see the
equation (3.1). After performing the subtraction, the resulting ordering is determined
in accordance with equation (3.6) – see below.

The semantic of this final determination can be seen on the couple of 9 and 8 for
instance: For any couple of a programmer and a manager having the difference of
years of practise 8, there is another couple of a programmer and a manager that is
preferred to the former couple and whose difference of years of practice is 9. �

Let us consider a triplet [R;≤R;⊕] of a relation R(A : R, B : R), preference relation
≤R on R, and a binary arithmetic operation ⊕(A,B) on domains of attributes A and
B:

⊕(A,B) : [R1;≤R1]× [R2;≤R2] → [R;≤R1[A]⊕R2[B]]

Then the resulting ordering ≤R1[A]⊕R2[B] on R is defined as follows:

(∀i, j ∈ R)
(

i ≤R1[A]⊕R2[B] j ⇔ (∃rm ∈ R1)(∃rn ∈ R2)
(
rm.A⊕ rn.B = j ∧

(∀rk ∈ R1)(∀rl ∈ R2)
(
rk.A⊕ rl.B = i ⇒ (rk, rl) ≤R×R (rm, rn)

)))
(3.6)

Relational Databases with Ordered Relations 11

4 Conclusion

By redefinition of relational algebra operations, aggregation functions and arithmetic,
we get operations of relational data model with preferences. These operations cor-
respond to operations we have in the classical relational data model. Thus, on one
side, we maintain the expressive power of the ordinary relational data model and at
the same time, as the new operations operate on and return ordered relations, we are
able to handle new information of preference represented by an ordering. This results
in the ability to retrieve more accurate data.2

References

[1] C. J. Date, An Introduction to Database Systems. Pearson Education, 8th edition, 2004.

List of Symbols

[a, b] an ordered pair of a and b
R(φ) a restriction of the relation R – the tuples satisfying a condition φ
R[A] a projection of the relation R on the set of attributes A – subtuples of

the relation R
≤A an ordering relation with an index A (just a label)
≤A a restriction of the ordering relation ≤ on the set A
(≤)a a power a of the ordering relation ≤
≡ an equivalence relation
R/ ≡ = {Ra|Ra ⊆ R ∧ a ∈ Ra ∧ (∀r ∈ R)(r ∈ Ra ⇔ r ≡ a)}
P(A) = {B|B ⊆ A}
r.A the value that a tuple r ∈ R acquires on an attribute A
⊕ the general arithmetic operation (+,−,×,÷, . . .)
A transitive closure of the set A

Precedence Operation Symbol
higher projection R[A]
↑ restriction R(φ)
↑ product ×
↑ difference \

lower union, intersection ∪, ∩

Table 1. Precedence of relation algebra operations

Received 28 November 2004.

2To our best knowledge, there is no similar study described in the literature.

