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Abstract. We present two original computational models — globular
universe and autopoietic automata — capturing the basic aspects of an
evolution: a construction of self–reproducing automata by self–assembly
and a transfer of algorithmically modified genetic information over gen-
erations. Within this framework we show implementation of autopoietic
automata in a globular universe. Further, we characterize the computa-
tional power of lineages of autopoietic automata via interactive Turing
machines and show an unbounded complexity growth of a computational
power of automata during the evolution. Finally, we define the problem
of sustainable evolution and show its undecidability.

1 Introduction

Some 50 years after von Neumann made public his result on self–reproducing
automata it appears that this result should not be merely seen as convincing
evidence of the existence of complex artificial self–reproducing structures. As
McMullin pointed out [3], von Neumann’s effort is to be also understood as
the first step towards a construction of structures which exhibit an ability of
evolutionary complexity growth “from simpler types to increasingly complicated
types”, as von Neumann put it. Unfortunately, von Neumann, in his work, did
not tackled the issue of complexity growth of self–reproducing automata in more
detail. In conclusion of his work [4] he merely indicated that these are the random
mutations which should play the role of the respective evolutionary mechanism
and included this problem into the list of problems which should be still inves-
tigated in the future (cf. [3] for a detailed discussion of that matter).

Obviously, von Neumann’s intuition was right as we nowadays know from
the theory of cellular and evolutionary biology. Nevertheless, a problem remains
whether random mutations are the only mechanism for the artificial evolution, or
whether there exists another mechanism resulting into more efficient evolution.
A related question is whether the hypothetical “other” mechanism can become a
subject of the evolution and how this can be achieved. Last but not least, is there
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an unbounded evolution, generating self–reproducing automata with increasingly
complicated behavior, from a computational complexity viewpoint? What is the
computational power of an unbounded evolutionary process? And can we decide
whether a given self–reproducing machine will give rise to an endless evolution
under given conditions? Some of these questions were discussed in [3], indicating
possible ways to answer them.

In this paper we sketch formal answers to the above mentioned questions.
For such a purpose we will present concepts and the results which emerge from
the author’s recent studies of the related problems. In their preliminary form the
respective results were presented partly in a recent workshop [6] and partly as a
technical report [7]. Contrary to these works the present paper is a survey paper
stressing the main ideas behind the respective models and results rather than
their formal description and proofs. This is so because a technical explanation
would require more space than it is available in this contribution. The interested
reader is invited to read the original sources.

In Part 2 we introduce an original model of globular universe which is the
basis for construction of so–called self–reproducing globular automata. In Part
3 we informally define a simple abstract model of self–reproducing automata —
so–called autopoietic automata — which obey self–reproducing abilities by their
very definition. From their own genetic information these automata are able to
compute new, algorithmically modified genetic information and pass it to their
offsprings. In Part 4 we show that an arbitrary autopoietic automaton can be
realized in a suitable globular universe. The reproduction of the resulting au-
tomaton proceeds, in a similar way, as the replication of a DNA strand in the
living cells. Further on, we will deal exclusively with the autopoietic automata.
In Part 5 we will characterize the computational power of the lineages of such
automata by equalling it to the power of interactive Turing machines. We also
mention the problem of a sustainable evolution and show its computational un-
decidability. Part 6 asks for the existence of an autopoietic automaton with an
unliminted “self–improvement” property. Such an automaton initiates an evolu-
tion generating subsequently all autopoietic automata. This automaton controls
its mutations is such a way that the genetic code “syntax” gets preserved; the
evolution of the mutational mechanism itself guarantees the coverage of the en-
tire evolutionary space. Section 7 is a closing part.

2 Globular universe

The basic design idea of a globular universe comes from the following gedanken-
experiment with a classical cellular automaton. Imagine a standard two–dimensional
cellular automaton and cut it by vertical and horizontal cuts into single cells each
of which is seen as a single finite–state automaton. Doing so the cells will lose
contacts with their neighbors. Let the cells freely fly around in the space, occa-
sionally colliding one with each other much like as under the Brownian motion.
Under a collision the cells come again into a passing contact and on that occa-
sion they perform a “computation” (a state transition) similarly as in the case
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when they were bound in a rigid grid of a cellular automaton. In our case, how-
ever, the colliding cells are not allowed only to change their states, they can also
change properties of their contact domains. E.g., after the collision the originally
neutral contact domains can become “sticky” and thus both cells will get bound
together. Or the contact domains will become repulsive — the cells will be forced
to move apart from each other. Thus, as a result we get a kind of a programmable
matter, or a universe with programmable particles. The previous picture is not
quite correct yet as far as the analogy with the Brownian motion is concerned.
In our model we do not consider any kinetic aspects of cells moving in the space
(like in lattice–gas automata); we are only interested in their final destinations,
where they collide with an other object. Thus, to simplify the model further, we
will assume that a cell in a proper state (i.e., having the required properties)
“will come flying” to a place where we need it and at due time. Such an approach
has great advantages over the probabilistic approach where we must care about
probabilities by which the required phenomena occur. Our assumption resembles
a nondeterministic choice: of all possible alternatives which can in principle oc-
cur we assume that the one that suits to our purposes will occur, indeed. Then, if
adequately programmed a cell can be incorporated into an object at hand which
in this way is being built by self–assembly. The last cosmetic change of the pre-
vious ideas is the transformation of square–shaped cells of the original cellular
automaton into globules. They are all alike, of the same size and on their spher-
ical surface on exactly (computationally) defined locations they have contact
domains whose attraction properties are controlled by a finite state mechanism
which is the same for all globules. As a result, the globular universe is created
by an infinite multiset of globules with a fixed set of contact domains defined on
their surface. The properties (i.e., the state plus the attraction abilities of contact
domains) of globules at interaction times are controlled by so–called interaction
function (or relation) which says how the states and attraction properties of two
interacting globules will change after the interaction (for more details see the
original paper [6]). A somewhat similar experimental framework using a finite
state mechanism to model contact properties of polyhedral particles moving in
a fluid in a simulated physical setting has been described in [2].

It is clear that our model of globular universe is a generalization of both
classical cellular automata and contemporary models of self–assembly (cf. [1])
as used in computer science.

3 Autopoietic automata

Our next goal will be a construction of a so–called self–reproducing globular
automaton. Its construction will be based on the principles of self–reproduction
as “discovered” by von Neumann [4]: the same “program” will be used both
for controlling automaton’s own computational behavior and as a template for
the production of an other program which will later control the offspring of
the self–reproducing automaton at hand. In a globular universe we cannot take
advantage of the fixed grid structure underlying the classical cellular automaton
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as it was the case with the von Neumann’s design. Namely, we cannot construct
a copy of the original machine at a priori computed “free” grid locations in
a sufficient distance from the parental machine. Instead, we will make use of
the self–assembly properties of the elements of a globular universe. Prior to
immerging into a design of a self–reproducing globular automaton we describe a
more abstract object, a so–called autopoietic automaton1 whose formal definition
can be found in [7]. This (mathematical) object will serve as a kind of abstract
specification of a self–reproducing globular automaton. An implementation of
an autopoietic automaton in a suitably designed globular universe we give rise
to the required self–reproducing globular automaton.

Autopoietic automata are nondeterministic finite state machines capturing
the elementary information processing, reproducing and evolving abilities of liv-
ing cells. Technically, an autopoietic automaton is a nondeterministic transducer
(a Mealy automaton) computing, in addition to the standard translation also the
transition relation of its offspring. The design of an autopoietic automaton sup-
ports working in two modes. Both modes are controlled by a transition relation.
The first of them is a standard transducer mode in which external input infor-
mation is read through an input port. In this phase the results of a computation
(if any) are sent to the output port. The second mode is a reproducing mode in
which no external information is taken into account. Instead, the representation
of a transition relation itself is used as a kind of the internal input. For this
purpose the representation of automaton’s own transition relation is available to
an autopoietic automaton on a special, so–called program tape. It is a two–way
read–only tape. The results of the computational steps in the reproducing mode
are written on a special one–way write–only output tape. Of course, both tapes
mentioned before are finite.

In general, the transition relation of an autopoietic automaton is a finite
subset of the cartesian product Σ × Q × Σ × Q × D, where Σ is an ordered
set of input and output symbols, Q is the ordered set of states and D is the
ordered set of move directions of the head on the program tape. Both sets Σ
and Q can be infinite, whereas D = {d1, d2, d3, d4}. On the program tape the
elements of these sets are unary encoded, i.e., an element σi ∈ Σ, qi ∈ Q, or
di ∈ D is encoded as 0i (i.e., as the string consisting of i zeros). It follows
that a tuple (σi, qj , σk, qm, dn) ∈ Σ × Q × Σ × Q × D is represented on the
tape as 10i10j10k10m10n1. Tuple (σi, qj , σk, qm, dn) is called an instruction of
the transition relation; a representation of an instruction on the tape is called
a segment. The semantics of an instruction is as follows: “reading σi in state qj

the automaton outputs σk, enters state qm and shifts its head in direction dn,”
where the value n = 1 means the shift by one cell to the left, n = 2 to the right,

1 The name of autopoietic automata has been chosen both to honor the Chilean biol-
ogists Varela and Maturana who coined the term of autopoiesis and also to distin-
guish these automata by the name from the notoriously known classical notion of
self–reproducing automata which are a kind of cellular automata. The autopoietic
automata are definitely not meant to model autopoiesis in the sense of Maturana
and Varela.
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n = 3 means no shift and n = 4 means “undefined”. The segments are written
on the program tape one after the other.

Formally, the mode of activities of an autopoietic automaton are derived
from the type of state that the automaton is in at that time. For such a purpose
the states of an automaton are split into two disjoint sets: a translating and
a reproducing set. To distinguish the types of individual states in their tape
representation also syntactically we will make use of the last component in the
five–tuple representing a segment. When, after entering state qm, the automaton
should work in a translating mode (i.e, when qm is a translating state), the
component in the respective instruction will take value d4 and in the respective
segment value 04. Otherwise, to indicate the reproducing states, this component
will take values d1, d2, or d3 denoting the move direction for the program tape
head. An autopoietic automaton will start its activity in an initial translating
state and while remaining in this type of states the automaton continues working
in the translation mode. The respective instructions are characterized by value
d4 in their last component signalling the absence of head moves. After the first
entering a reproducing state the automaton must stay in the reproducing mode.
The reproducing mode terminates by entering the final reproducing state. At
that moment the automaton splits into two automata by definition. The first of
the two will “inherit” the program tape of the parental automaton as its own
program tape (denoted as Program 1 in Fig.1), whereas the second one will
use, in place of its program tape, the output tape of the parental automaton
(denoted as Program 2). Then both new automata start their activities with
empty output tapes. Each new automaton is seen as an offspring of the original
automaton. Clearly, one of the offsprings will always be identical to its parent,
but the other offspring can be different from its parent, indeed. Note that it has
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Fig. 1. Autopoietic automaton reproducing by fission

been the admittance of infinite symbol and state sets allowing an autopoietic
automaton’s offspring to work with a larger set of symbols or states than its
parent could. By this we have opened a possibility of an evolution leading from
simpler to more complicated automata.
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4 Implementing autopoietic automata in a globular
universe

Now we design a specific globular universe and show the implementation of
autopoietic automata in it. It is obvious that autopoietic automata cannot exist
in a universe which is “too simple”. For instance, a universe with only single–
state globules does not enable any interaction of globules that would result in
their state changes. Similarly, no globular complexes can be built in a universe
with only neutral globules (i.e. with those unable entering attraction states).
In the sequel a universe in which we will implement an autopoietic automaton
will not be explicitly described. Rather, the required properties of the globular
universe will be implied by the construction of the self–reproducing globular
automaton and it will be clear that such a universe does exist, indeed.

Theorem 1. There is a nondeterministic globular universe in which, for any
autopoietic automaton, there exists its implementation in the form of a self–
reproducing globular automaton.

Sketch of the proof: Let A be an autopoietic automaton and consider its
program tape with the segments of the transition relation of A written on it.
In our universe we will represent this tape as a string of globules. The length
of this string equals that of the tape. For simplicity we will first assume that
globules in our universe have enough states for directly representing the symbols
of a finite subset S ⊂ Σ and R ⊂ Q really used by the automaton. This means,
we assume that there is a one–to–one correspondence between the set of states
of globules and S or R, respectively. Moreover, assume that some extra states
still remain free. These states will be used to hold “auxiliary variables” in our
construction. Thus, in our string each globule will be in a state which uniquely
corresponds to the symbol encoded on the automaton’s program tape. The glob-
ules are designed so that they have four equidistant contact domains — poles —
around their equator. On each globule one pair of opposite poles is in a “sticky”
state forcing globules to form a sequence. Moreover, we can assume that the first
and the last globule will also stick together giving rise to a so–called basic ring
representing the transition relation of A. This ring will form the basis of the
globular automaton G implementing A.

Now it is time to describe the input “mechanism” by which G reads its
inputs. We will simply assume that G “reads” its input by its entire “body”.
I.e., we will assume that there will come a “wave” of the input globules which
will attach themselves (because they are programmed so) to the globules’ poles
located on the same side of the basic ring. We can assume the existence of such
a wave thanks to the properties of the nondeterministic universe. Afterwards,
G starts to work in the translation mode as an interpreter of the code which is
represented in the basic ring. In order to work in this way there is an additional
ring attached to the basic ring where additional globules representing necessary
auxiliary “variables” are kept. The globules in this ring serve e.g. as “markers”
denoting the current state or the segment with an instruction to be performed,
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the program head location, by their interaction “circular” signals are sent around
the rings, etc. The resulting globular automaton takes a form of a double ring;
its globules mirror the actions of a similar classical cellular automaton. The only
difference is that G is “made of” globules instead of cells, but the neighboring
spacial relations among the globules and cells are the same. The details of the
construction are given in [6]. The output from G is done in an analogous way to
the input, i.e., the original input globules are “transformed” (via a change of their
states) into required output globules and are “released” into the environment (via
a change of their attraction properties). In this way the actions of G proceed until
G enters the first reproducing state.
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Fig. 2. Self–reproduction of a globular automaton

In the reproducing mode G slavishly interprets the instructions from its pro-
gram tape similarly as before. The difference is that now the input is read directly
from the globules of the basic ring (for such a purpose the head position must
be represented in the auxiliary ring) and the output globules (to which the in-
coming globules are transformed) are not all released into the environment but
those at proper places are subsequently “glued” together to form yet another
ring which grows in this manner. In parallel to this ring an auxiliary ring much
as the one attached to the basic ring is built. The emerging output and auxiliary
rings also form a double ring which touches the original rings at the place where
the reading head was initially located. Once G enters the final reproducing state,
the newly generated double ring detaches itself from the original double ring
and each complex starts to exist as an independent self–reproducing globular
automaton.

The implementation of A we have just described works in a universe with
globules having a sufficient number of states. In a universe with less states we
have to work with globules corresponding to the unary coding of states and sym-
bols as required by the definition of autopoietic automata. Thus the simulation
process gets more complicated; nevertheless, its main features will remain the
same.

2

Even from the previous sketch one can see that in order to realize a self–
reproducing globular automaton a nondeterministic universe with a certain min-
imal number of states is needed. The upper bound on this number could be in-
ferred from a more detailed description of our construction. On the other hand,
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it is also clear that in universes with too small a number of globular states it
might not be principally possible to build a self–reproducing automaton.

5 The computational power of autopoietic automata

In order to get an idea of the computational power of self–reproducing globular
automata we will study the power of autopoietic automata. The next theorem
will characterize the computational power of the so–called lineages of autopoietic
automata with the help of interactive Turing machines. A lineage of autopoietic
automata is an infinite sequence of autopoietic automata in which each mem-
ber has exactly one immediate successor which is an immediate offspring of
that member. A lineage corresponds to a single path, starting in the root, in
a “genealogical” tree consisting of all possible offsprings of a given autopoietic
automaton which is located in the root. In this tree, parents are linked to their
immediate offsprings. A tree will emerge due to the fact that a single autopoi-
etic automaton can give rise to several offsprings. An interactive Turing machine
(ITM) is a Turing machine reading a potentially infinite sequence of its inputs
via an input port and sending its outputs to the output port [5]. Both in the case
of autopoietic automata and ITMs we allow so–called empty inputs that corre-
spond to a situation when no symbol from Σ appears at some port at that time.
We say that an ITM simulates a given autopoietic automaton (or vice versa) if
and only if both devices compute the same translation (mapping) from the input
symbol sequence to the output symbol sequence, with empty symbols deleted
from both sequences.

Theorem 2. The computational power of a lineage of (nondeterministic) au-
topoietic automata equals to that of a nondeterministic interactive Turing ma-
chine.

Sketch of the proof: The proof of the left–to–right implication is relatively
simple. The simulation of a given member of a lineage is carried out by the uni-
versal ITM which, on its first working tape, has a representation of automaton’s
program tape and interprets the instructions from this tape. In the translation
mode the machine reads its inputs from the input port and sends the outputs
to its output port. In the reproducing mode the machine reads its first tape and
writes the output to the second working tape. After reaching the automaton’s
final reproducing state the machine changes the role of its tapes, empties the
second tape and the simulation of the next member of a lineage can resume.

The reverse simulation is more complicated. The idea is to see the ITM’s
computations performed in the space of size i as those of the finite state au-
tomaton Ai, for i = 1, 2, . . . . . The automata Ai are realized by corresponding
autopoietic automata. What must be designed is the reproducing instructions for
autopoietic automata which, as one can see, are the same for all automata. Their
task is to “compute” the transition relation for Ai+1 given the transition relation
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of Ai. Then, along with the growing space complexity of the Turing machine in-
creasingly bigger autopoietic automata are generated giving the members of the
required lineage we are after. For more details see the original report [7].

2

It is obvious that the halting problem for an ITM is undecidable. Thus,
it is undecidable whether, given an infinite input sequence and an ITM, the
machine will ever halt on that input. A similar question for a given autopoietic
automaton and a given infinite input sequence would be the following problem of
a sustainable evolution: is it decidable whether the automaton will generate an
infinite lineage of its offsprings on that input? Referring to the previous theorem
the following result holds:

Corollary 1. The problem of a sustainable evolution is undecidable.

6 Unbounded evolutionary complexity growth

The previous corollary shows that for a given input sequence we cannot in general
decide whether an autopoietic automaton will generate an infinite lineage. It
is trivial to see that the situation changes dramatically if we submit to the
automata suitable inputs that will cause their entering final reproducing states.
To see this it is enough to consider an automaton which replicates on some input
and to submit the same input to that offspring which equals its parent. But now
we present a much less obvious result — we show an unbounded complexity
growth of automata during an evolution by constructing an automaton which in
a suitable nondeterministic universe generates all possible autopoietic automata.

Theorem 3. There exists a nondeterministic autopoietic automaton which, in a
suitable nondeterministic universe, generates all existing autopoietic automata.

Sketch of the proof: We design an automaton whose code contains only the
reproducing instructions. These instructions read the segments from the au-
tomaton’s program tape, modify them and rewrite them onto the output tape.
The modifications do not concern the syntax of the segments, i.e., the separa-
tors (symbols 1) between the sectors as well as the number of sectors remain
unchanged. Then the modifications are threefold:

– A change within a sector: when copying a sector the automaton adds or
omits one zero; it follows that the successor automaton will work with other
symbols or states than its parent;

– Adding one segment whose contents is nondeterministically generated; this
will potentially give rise to a “more complex” automaton;

– Omitting a segment (the automata get “simplified”).

It is clear that the initial automaton will subsequently generate autopoietic
automata with all possible transition relations. Those of these automata which
could in principle reach the final reproducing state on some input will indeed
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get such an input and hence will self–reproduce. The other automata will not
reproduce. Again, for the details see the original report [7].

2

It is important to realize that the construction just described enables an evo-
lution of the mechanism which is responsible for the algorithmic modification of
the transition relation. Thus, what we got is a mechanism for the evolution’s evo-
lution. Putting it differently, in our latest autopoietic automaton the evolution
is not guided by a fixed set of rules; rather, these rules themselves are subjects
of an evolution. This is a property not possessed by the automata constructed
in the proof of Theorem 2. Last but not least, note that for covering the whole
evolutionary space of autopoietic automata it was of fundamental importance
that both components of an autopoietic automaton’s control — the translating
and the reproducing one — were a subject of an evolution.

7 Conclusion

In the paper we surveyed several fundamental results concerning the self–reprodu-
cing automata. All these results were based on a new formal framework enabling
computational modelling and mathematical analyzing of the respective phenom-
ena. The results show the viability of the approach, bring new insights into the
nature and power of evolutionary processes and thus are of interest both from
the artificial life as well as from the computational complexity theory point of
view.
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