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Abstract. Complexity of data with respect to a particular class of neu-
ral networks is studied. Data complexity is measured by the magnitude
of a certain norm of either the regression function induced by a proba-
bility measure describing the data or a function interpolating a sample
of input/output pairs of training data chosen with respect to this prob-
ability. The norm is tailored to a type of computational units in the
network class. It is shown that for data for which this norm is “small”,
convergence of infima of error functionals over networks with increas-
ing number of hidden units to the global minima is relatively fast. Thus
for such data, networks with a reasonable model complexity can achieve
good performance during learning. For perceptron networks, the rela-
tionship between data complexity, data dimensionality and smoothness
is investigated.

1 Introduction

The goal of a supervised learning is to adjust parameters of a neural network
so that it approximates with a sufficient accuracy a functional relationship be-
tween inputs and outputs known only by a sample of empirical data (input-
output pairs). Many learning algorithms (such as the back-propagation [21], [6])
iteratively decrease the average square of errors on a training set. Theoretically,
such learning is modeled as minimization of error functionals defined by data:
the expected error is determined by data in the form of a probability measure
and the empirical error by a discrete sample of data chosen with respect to this
measure (see, e.g., [20], [5]).

In most learning algorithms, either the number of network computational
units is chosen in advance or it is dynamically allocated, but in both cases, it is
constrained. The speed of decrease of infima of error functionals over networks
with increasing number of computational units can play a role of a measure of
complexity of data with respect to a given type of computational units (such
as perceptrons with a given activation function or radial or kernel units with a
given kernel).

In this paper, we investigate data complexity with respect to a class of net-
works for data defining the error functionals: a probability measure ρ and a
sample of input-output pairs z = {(ui, vi) | i = 1, . . . , m}. We derive an upper



bound on the speed of decrease of infima of error functionals over networks with
n hidden units depending on a certain norm tailored to the type of hidden units
of either the regression function defined by the probability measure describing
the data or its discrete approximation in the form of a function interpolating a
sample of input-output pairs of training data. We show that the speed of de-
crease od these infima is bounded from above by 1

n times the square of this
norm. Thus over a network with the number of hidden units n greater than 1

ε
times the square of this norm, infima of error functionals are within ε from their
global minima. We propose to characterize data complexity by the magnitudes
of this norm of the regression or an interpolating function.

For perceptron networks, we investigate the relationship between data com-
plexity, smoothness and dimensionality. We estimate the norm tailored to per-
ceptrons by the product of a function k(d) of the dimension of the data d (which
is decreasing exponentially fast to zero) and a Sobolev seminorm of the regres-
sion or an interpolating function defined as the maximum of the L1-norms of
the partial derivatives of the order d. This estimate shows that for perceptron
networks with increasing dimensionality of inputs, the tolerance on smoothness
of the training data (measured by the Sobolev seminorm of the regression or an
interpolatig function), which allow learning by networks of a reasonable size, is
increasing exponentially fast.

The paper is organized as follows. In section 2, learning is described as mini-
mization of error functionals expressed in terms of distance functionals. In section
3, tools from approximation theory are applied to obtain upper bounds on rates
of decrease of infima of the error functionals over networks with increasing model
complexity and by inspection of these bounds, a measure of data complexity is
proposed. In section 4, the proposed concept of data complexity is illustrated
by the example of the class of perceptron networks, for which the relationship
between data complexity, data dimensionality and smoothness of the regression
or an interpolating function is analyzed.

2 Learning as minimization of error functionals

Let ρ be a non degenerate (no nonempty open set has measure zero) probability
measure defined on Z = X × Y , where X is a compact subset of Rd and Y a
bounded subset of R (R denotes the set of real numbers). The measure ρ induces
the marginal probability measure on X defined for every S ⊆ X as ρX(S) =
ρ(π−1

X (S)), where πX : X×Y → X denotes the projection. Let (L2
ρX

(X), ‖.‖L2
ρX

)
denote the Lebesque space of functions satisfying

∫
X

f2dρX < ∞. The expected
error functional Eρ determined by ρ is defined for every f in L2

ρX
(X) as

Eρ(f) =
∫

Z

(f(x)− y)2 dρ



and the empirical error functional Ez determined by a sample of data z =
{(ui, vi) ∈ X × Y | i = 1, . . . ,m} is defined as

Ez(f) =
1
m

m∑

i=1

(f(ui)− vi)2.

It is easy to see and well-known [5] that the expected error Eρ achieves its
minimum over the whole space L2

ρX
(X) at the regression function fρ defined for

all x ∈ X as
fρ(x) =

∫

Y

y dρ(y|x),

where ρ(y|x) is the conditional (w.r.t. x) probability measure on Y . Thsus

min
f∈L2

ρX
(X)

Eρ(f) = Eρ(fρ).

Moreover,

Eρ(f) =
∫

X

(f(x)− fρ(x))2dρX + Eρ(fρ) = ‖f − fρ‖2L2
ρX

+ Eρ(fρ)

[5, p.5]. So Eρ can be expressed as the square of the L2
ρX

-distance from fρ plus
a constant

Eρ(f) = ‖f − fρ‖2L2
ρX

+ Eρ(fρ). (1)

The empirical error Ez achieves its minimum over the whole space L2
ρX

(X)
at any function that interpolates the sample z, i.e., at any function h ∈ L2

ρX
(X)

such that h|Xu
= hz, where Xu = {u1, . . . , um} and hz : Xu → Y is defined as

hz(ui) = vi. (2)

For all such functions h,

min
f∈L2

ρX
(X)

Ez(f) = Ez(h).

Also the empirical error can be expressed in terms of a distance functional. For
any X ⊂ Rd containing Xu and f : X → R, let

fu = f|Xu
: Xu → R

denote f restricted to Xu and ‖.‖2,m denote the weighted `2-norm on Rm defined
by ‖x‖22,m = 1

m

∑m
i=1 x2

i . Then

Ez(f) =
1
m

m∑

i=1

(f(ui)−vi)2 =
1
m

m∑

i=1

(fu(ui)−hz(ui))2 = ‖fu−hz‖22,m = Ez(fu).

So the empirical error Ez can be expressed as the square of the l2m-distance from
hz

Ez(f) = ‖fu − hz‖22,m. (3)



3 Characterization of data complexity with respect to a
class of networks

To model neural-network learning, one has to consider minimization of error
functionals over subsets of L2

ρX
(X) formed by functions computable by various

classes of networks. Often, neither the regression function fρ nor any function
interpolating the sample z is computable by a network of a given type. Even
if some of these functions can be represented as an input-output function of
a network from the class, the network might have too many hidden units to
be implementable. In most learning algorithms, either the number of hidden
units is chosen in advance or it is dynamically allocated, but in both cases, it
is constrained. We investigate complexity of the data ρ and z defining the error
functionals with respect to a given class of networks in terms of model complexity
of networks sufficient for learning from these data.

The most common class of networks with n hidden units and one linear output
unit can compute functions of the form

spann G =

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
,

where G is the set of functions that can be computed by computational units of
a given type (such as perceptrons or radial-basis functions). The number n of
hidden units plays the role of a measure of model complexity of the network. Its
size is critical for a feasibility of an implementation.

For all common types of computational units, the union ∪∞n=1spannG of the
nested family of sets of functions computable by nets with n hidden units is
dense in L2

ρX
(X) (see, e.g., [18], [13] and the references therein).

Both the expected and the empirical error functionals are continuous on
L2

ρX
(X) (their representations (1) and (3) show that they can be expressed as

squares of the L2
ρX

-norm or weighted `2-norm resp., plus a constant). It is easy
to see that a minimum of a continuous functional over the whole space is equal
to its infimum over any dense subset. Thus

inf
f∈∪∞n=1spannG

Eρ(f) = Eρ(fρ) and inf
f∈∪∞n=1spannG

Ez(f) = 0.

Note that for G linearly independent, sets spannG are not convex and thus
results from theory of convex optimization cannot be applied. Thus we have to
consider merely inff∈spannG Eρ(f) because for a general set G, minima over sets
spannG might not be achieved.

The speed of convergence with the number of hidden units n increasing of
the infima of error functionals over sets spannG to the global minima over the
whole space L2

ρX
(X) is critical for learning capability of the class of networks

with hidden units computing functions from G (for example, perceptrons with
a certain activation function). Inspection of estimates of this speed can suggest
some characterization of complexity of data guaranteeing a possibility of learning
from such data by networks with a reasonable number of hidden units computing



functions from the class G. We shall show that one such characterization of
complexity of data with respect to a class of networks is the magnitude of a
norm tailored to the type of hidden units of either the regression function fρ or
any function h interpolating the sample z, i.e., a function satisfying h(ui) = vi for
all i, . . . ,m. If the magnitude of such norm is “small”, infima of error functionals
over spannG converge quickly.

The norm, called G-variation, can be defined for any bounded nonempty
subset G of a normed linear space (X, ‖.‖) (here, we consider the Hilbert space
L2

ρX
(X) and some parameterized sets G corresponding to sets of functions com-

putable by neural networks). G-variation is defined as the Minkowski functional
of the closed convex symmetric hull of G, i.e.,

‖f‖G = inf
{
c > 0 : c−1f ∈ cl conv (G ∪ −G)

}
, (4)

where the closure cl is taken with respect to the topology generated by the norm
‖.‖ and conv denotes the convex hull. Note that G-variation can be infinite (when
the set on the right-hand side is empty). It was defined in [12] as an extension
of the variation with respect to half-spaces introduced for Heaviside perceptron
networks in [2] (for the properties of variation see [14]).

The following theorem estimates speed of convergence of the infima of the
expected and the empirical error functionals over sets spannG formed by func-
tions computable by networks with n hidden units computing functions from
G.

Theorem 1. Let d,m, n be positive integers, both X ⊂ Rd and Y ⊂ R be com-
pact, z = {(ui, vi) ∈ X × Y | i = 1, . . . , m} with all ui distinct, ρ be a non
degenerate probability measure on X×Y , and G be a bounded subset of L2

ρX
(X)

with sG = supg∈G ‖g‖L2
ρX

. Then

inf
f∈spannG

Eρ(f)− Eρ(fρ) ≤ s2
G‖fρ‖2G

n

and for every h ∈ L2
ρX

(X) interpolating the sample z,

inf
f∈spannG

Ez(f) ≤ s2
G‖h‖2G

n
.

Proof. By the representation (1), for every f ∈ L2
ρX

(X), Eρ(f) − Eρ(fρ) =
‖fρ − f‖2L2

ρX

and so inff∈spannG Ez(f) − Eρ(fρ) = ‖fρ − spannG‖2L2
ρX

. Thus it
remains to estimate the distance of fρ from spannG. By an estimate of rates of
approximation by spannG in a Hilbert space derived by Maurey [19], Jones [8]
and Barron [2, 3], and reformulated in terms of G-variation in [14], this distance
is bounded from above by sG‖fρ‖G√

n
. Hence inff∈spannG Eρ(f)−Eρ(fρ) ≤ s2

G‖fρ‖2G
n .

Let G|Xu
denote the set of functions from G restricted to Xu = {u1, . . . , um}.

By the representation (3), for every f ∈ L2
ρX

(X), Ez(f) = ‖fu − hz‖2L2
ρX

and so



inff∈spannG Ez(f) = ‖hz−spannG|Xu
‖22,m. By Maurey-Jones-Barron’s estimate,

‖hz−spannG|Xu
‖2,m ≤ sG|Xu

‖hz‖G|Xu√
n

. Hence inff∈spannG Ez(f) ≤ s2
G|Xu

‖hz‖2G|Xu

n .
It follows directly from the definitions that if f|Xu

= fu, then ‖fu‖G|Xu
≤ ‖f‖G.

Thus for every h interpolating the sample z,
inff∈spannG Ez(f) ≤ s2

G‖h‖2G
n . ¤

So the infima of error functionals achievable over networks with n hidden
units computing functions from a set G decrease at least as fast as 1

n times the
square of the G-variational norm of the regression function or some interpolating
function. When these norms are small, good approximations of the two global
minima, minf∈L2

ρX
(X) Eρ(f) = Eρ(fρ) and minf∈L2

ρX
(X) Ez(f) = 0, can be ob-

tained using networks with a moderate number of units. Thus the magnitudes of
the G-variational norms of the regression function or some function interpolat-
ing the sample z of input-output pairs can be used as measures of complexity of
data given by the probability measure ρ or a finite sample z chosen from X × Y
with respect to ρ. When these magnitudes are “small”, data have a reasonable
complexity for learning by networks with hidden units computing functions from
the set G.

4 Smoothness and data complexity with respect to
perceptron networks

To get some insight into complexity of data with respect to various types of
networks, one has to estimate corresponding variational norms. One method of
such estimation takes an advantage of integral representations of functions in
the form of “networks with continua of hidden units”.

Typically, sets G describing computational units are of the form

G = {φ(., a) | a ∈ A},
where φ : X ×A → R.

For example, perceptrons compute functions from the set

Pd(ψ, X) = {f : X → R | f(x) = ψ(vi · x + bi), vi ∈ Rd, bi ∈ R},
where ψ : R → R is an activation function (typically, a sigmoidal, i.e., a mono-
tonic nondecreasing function σ : R → R satisfying limt→−∞ σ(t) = 0 and
limt→∞ σ(t) = 1). An important type of a sigmoidal is the Heaviside function
ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0. So, Pd(ψ, X) = {φ(x, (v1, . . . , vd, b)) | v ∈
Rd, b ∈ R}, where φ(x, (v1, . . . , vd, b)) = ψ(v · x + b).

If for X and A compact, a continuous function f : X → R can be represented
as a “neural network” with a continuum of hidden units computing functions
φ(., a) and with output weights w(a), i.e.,

f(x) =
∫

A

w(a)φ(x, a)da



and the weighing function w is in L1
λ(X), where λ denotes the Lebesgue measure,

then

‖f‖G ≤ ‖w‖L1
λ

(5)

[15, Theorem 3.1] (see also [7] and [11] for extensions of this result). So G-
variational norm can be estimated using the L1

λ-norm of the weighting function.
For standard computational units, many functions can be represented as such

“infinite” networks and moreover the L1
λ-norms of weighting functions can be

estimated in terms of some norms expressing certain kinds of smoothness, the
upper bound (5) gives a method for estimating the data complexity proposed in
the previous section.

For all sigmoidals σ, Pd(σ,X)-variation in L2
ρX

(X) is equal to Pd(ϑ, X)-
variation [15]. Thus to investigate complexity with respect to sigmoidal per-
ceptron networks, it is sufficient to estimate variation with respect to Heav-
iside perceptrons called variation with respect to half-spaces (perceptons with
the Heaviside activation compute characteristic functions of half-spaces of Rd

intersected with X). To simplify notation, we write

Hd(X)

instead of Pd(ϑ, X). So ‖.‖Hd
= ‖.‖Pd(σ) for all sigmoidals.

An integral representation as a network with Heaviside perceptrons holds
for functions from a wide class (including functions on Rd, which are compactly
supported or merely “rapidly decreasing at infinity” and have continuous partial
derivatives of all orders) [15], [10]. For d odd, the representation is of the form

f(x) =
∫

Sd−1×R
wf (e, b)ϑ(e · x + b)dedb, (6)

where Sd−1 denotes the unit sphere in Rd and the weighing function wf (e, b)
is a product of a function a(d) of the number of variables d converging with
d increasing exponentially fast to zero and a “flow of the order d through the
hyperplane” He,b = {x ∈ Rd |x · e + b = 0}. More precisely,

wf (e, b) = a(d)
∫

He,b

(D(d)
e (f))(y)dy,

where
a(d) = (−1)(d−1)/2(1/2)(2π)1−d

and D
(d)
e denotes the directional derivative of the order d in the direction e.

The integral representation (6) was derived in [15] for compactly supported
functions from Cd(Rd) and extended in [11] to functions of a weakly controlled
decay, which satisfy for all α with 0 ≤ |α| < d, lim‖x‖→∞(Dαf)(x) = 0 and there
exists ε > 0 such that for each multi-index α with |α| = d, lim‖x‖→∞(Dαf)(x)‖x‖d+1+ε =
0. The class of functions with weakly controlled decay contains all d-times con-
tinuously differentiable functions with compact support as well as all functions



from the Schwartz class S(Rd) [1, p.251]). In particular, it contains the Gaussian
function γd(x) = exp(−‖x‖2).

In [10], the L1
λ-norm of the weighting function wf was estimated by a product

of a function k(d), which is decreasing exponentially fast with the number of
variables d, with the Sobolev seminorm of the represented function f :

‖wf‖L1
λ
≤ k(d)‖f‖d,1,∞.

The seminorm ‖.‖d,1,∞ is defined as

‖f‖d,1,∞ = max
|α|=d

‖Dαf‖L1
λ(Rd),

where α = (α1, . . . , αd) is a multi-index with nonnegative integer components,
Dα = (∂/∂x1)α1 . . . (∂/∂xd)αd and |α| = α1 + · · ·+ αd .

Thus by (5)

‖f‖Hd
≤ k(d)‖f‖d,1,∞ = k(d) max

|α|=d
‖Dαf‖L1

λ(Rd) (7)

where

k(d) ∼
(

4π

d

)1/2 ( e

2π

)d/2

<

(
4π

d

)1/2 (
1
2

)d/2

.

Note that for large d, the seminorm ‖f‖1,d,∞ is much smaller than the stan-
dard Sobolev norm ‖f‖d,1 =

∑
|α|≤d ‖Dαf‖L1

λ(Rd) [1] as instead of the summa-
tion of 2d iterated partial derivatives of f over all α with |α| ≤ d, merely their
maximum over α with |α| = d is taken.

The following theorem estimates speed of decrease of minima of error func-
tionals over networks with increasing number n of Heaviside perceptrons.

Theorem 2. Let d,m, n be positive integers, d odd, both X ⊂ Rd and Y ⊂ R
be compact, z = {(ui, vi) ∈ X × Y | i = 1, . . . ,m} with all ui distinct, ρ be a
non degenerate probability measure on X × Y , such that the regression function
fρ : X → R is a restriction of a function hρ : Rd → R of a weakly controlled
decay and let h : Rd → R be a function of a weakly controlled decay interpolating
the sample z. Then

min
f∈spannHd(X)

Ez(f) ≤ c(d)‖h‖2d,1,∞
n

and min
f∈spannHd(X)

Eρ(f)− Eρ(fρ) ≤
c(d)‖hρ‖2d,1,∞

n
,

where c(d) ∼ 4π
d

(
e
2π

)d
< 4π

d2d .

Proof. It was shown in [9] that sets spannHd(X) are approximatively compact
in L2

ρX
(X) and so each function in L2

ρX
(X) has its best approximation in sets

spannHd. Thus by (1) and (3), both the functionals Eρ and Ez achieve over



spannHd their minima. It follows from [10] (Theorems 3.3, 4.2 and Corollary
3.4) that for all d odd and all h of a weakly controlled decay

‖h‖Hd(X) ≤ k(d)‖h‖d,1,∞,

where k(d) ∼ (
4π
d

)1/2 (
e
2π

)d/2. The statement follows by Theorem 1. ¤

Thus for any sample of data z, which can be interpolated by a function
h ∈ Cd(Rd) vanishing sufficiently quickly at infinity such that the squares of the
maxima of the L1

λ-norms of partial derivatives of the order |α| = d do not exceed
an exponentially increasing upper bound d

4π 2d, more precisely

‖h‖2d,1,∞ = max
|α|=d

‖Dαf‖2L1
λ(Rd) ≤

1
c(d)

∼ d

4π

(
2π

e

)d

<
d

4π
2d ,

the minima of the empirical error Ez over networks with n sigmoidal perceptrons
decrease to zero rather quickly – at least as fast as 1

n .
For example when for d > 4π, all the L1

λ-norms of the partial derivatives of
the order d are smaller than 2d, convergence faster than 1

n is guaranteed.
Our estimates of data complexity can be illustrated by the example of the

Gaussian function γd(x) = exp(−‖x‖2). It was shown in [10] that for d odd,
‖γd‖Hd

≤ 2d (see also [4] for a weaker estimate depending on the size of X,
which is valid also for d even). Thus by Theorem 1, when the regression function
fρ = γd and the sample z of the size m is such that the function hz defined as
hz(ui) = vi is the restriction of the Gaussian function γd to Xu = {u1, . . . , um},
then

min
f∈spannHd(X)

Eρ(f) ≤ 4d2

n
and min

f∈spannHd(X)
Ez(f) ≤ 4d2

n
. (8)

This estimate gives some insight into the relationship between two geomet-
rically opposite types of computational units - Gaussian radial-basis functions
(RBFs) and Heaviside perceptrons. Perceptrons compute plane waves (functions
of the form ψ(v · x + b), which are constant on the hyperplanes parallel with the
hyperplane {x ∈ Rd | v ·x+ b = 0}), while Gaussian RBFs compute radial waves
(functions of the from exp(−(b‖x−v‖)2), which are constant on spheres centered
at v). By (8) minima of the error functionals defined by the d-dimensional Gaus-
sian probability measure over networks with n Heaviside perceptrons converge
to zero faster than 4d2

n . Note that the upper bound 4d2

n grows with the dimension
d only quadratically and it does not depend on the size m of a sample.

On the other hand, there exist samples z = {(ui, vi) | i = 1, . . . , m}, the sizes
of which influence the magnitudes of the variations of the functions hz defined
as hz(ui) = vi. For example, for any positive integer k, consider X = [0, 2k],
Y = [−1, 1] and the sample z = {(2i, 1), (2i + 1,−1) | i = 0, . . . , k − 1} of the
size m = 2k. Then one can easily verify that ‖hz‖Hd(X) = 2k (for functions of
one variable, variation with respect to half-spaces is up to a constant equal to
their total variation, see [2], [15]). This example indicates that the more the data
“oscillate”, the larger the variation of functions, which interpolate them.



5 Discussion

We proposed a measure of data complexity with respect to a class of neural
networks based on inspection of an estimate of speed of convergence of the error
functionals defined by the data. For data with a “small” complexity expressed in
terms of a magnitude of a certain norm (which is tailored to the network type)
of the regression or an interpolating function defined by the data, networks with
a reasonable model complexity can achieve good performance during learning.

Our analysis of data complexity in neural-network learning merely considers
minimization of error functionals. The next step should be to extend the study
to the case of regularized expected errors as in the case of kernel models in [16],
[17]. Various stabilizers could be considered, among which variation with respect
to half-spaces seems to be the most promising. In one dimensional case, variation
with respect to half-spaces is up to a constant equal to total variation [2], [15],
which is used as a stabilizer in image processing. Moreover, our estimates show
its importance in characterization of data complexity in learning by perceptron
networks.
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