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Abstract. When dealing with image databases, we often need to solve
the problem of how to retrieve a desired set of images effectively and
efficiently. As a representation of images, there are commonly used some
high-dimensional vectors of extracted features, since in such a way the
content-based image retrieval is turned into a geometric-search problem.
In this article we present a case study of feature extraction from raw
image data by means of the LSI method (singular-value decomposition,
respectively). Simultaneously, we show how such a kind of feature ex-
traction can be used for efficient and effective similarity retrieval using
the M-tree index. Because of the application to image retrieval, we also
show some interesting effects of LSI, which are not directly obvious in
the area of text retrieval (where LSI came from).

LSI, similarity search in image databases, M-tree

1 Introduction

With the continuously emerging information technology, the volume of multime-
dia databases (collections of text, image, audio and video documents/objects)
increases rapidly, while there is a strong need for an appropriate representation
of such a kind of databases, in order to provide an efficient and effective way
of content-based multimedia retrieval [7]. A multimedia object (an image, in
our case) itself is often represented by a high-dimensional vector, because then
semantics of content-based retrieval from a database (transformed into a vector
set) can be defined as a geometric problem. Given a query image (its vector
respectively), the vector set is examined by use of a similarity function which is
used to assign a relevance of each examined particular image to the query.

Up to this day, there exist many methods for a particular image retrieval
domain, but none of them stands for a way how to generally build up an effective
geometric retrieval model (i.e. the feature vector extraction method and the
design of similarity function), which could be successfully applicable to any given
image database domain. Furthermore, the most frequent method of similarity



search in a vector set employs the simple sequential scan, where the query vector
is compared against every vector in the set. Although this approach is sufficient
for small data, for large image databases the sequential scan becomes inefficient
or even impracticable.

Fig. 1. Several images from the collection of buildings.

In this article we propose an M-tree-based indexing of images, the feature
vectors of which were constructed using the LSI method (singular-value decom-
position) from the raw pixel data. With this approach we address both issues,
the effectiveness (i.e. the quality of retrieval, commonly measured by the pre-
cision and recall) as well as the efficiency (i.e. the performance of retrieval). In
Figure 1 see a sample from collection of 730 images [20], which will be used in
the following as well as for the experiments.

We need to say this paper has not an ambition to compete with the powerful
techniques of image recognition and indexing [7] (that’s why we do not include
the state-of-the-art section, it would be too huge), we intend this paper rather
as a expedition into the "guts” of SVD and LSI by means of visualization. The
visualized objects (e.g. singular vectors) should provide the reader by a hint why
to use (or not use) the LSI techniques in various areas of information retrieval.



2 Feature Extraction using LSI

During the last two decades, there have been developed very many methods
for feature extraction from images (hence forming the vector representation),
the most often methods extract various histograms (of colors, contrast, etc) [3],
textures [18], shapes [14], color layout [9], and so on. For domain specific image
databases (e.g. fingerprints, irises, faces) we can find many other, specialized,
approaches. For an overview of current methods of image feature extraction we
refer to [4,13].

In our approach we use completely different view to the problem [11,12],
where the whole image of size x -y pixels (their levels of brightness, respectively)
is treated as a vector of dimension z - y. The image-to-vector transformation is
very simple, we just concatenate the pixel rows of the image into a single one,
long pixel row (the vector of pixel brightnesses). After this preparation! we are
able to represent the entire collection of n images by a matrix A of order -y X n,
where the individual image vectors are the matrix columns (see Figure 2, 2 = 80,
y = 60, n = 730, i.e. the matrix A is of order 4800 x 730).
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Fig. 2. The image-to-vector transformation and the placement in the matrix A.

1 'We cannot speak about a kind of feature extraction here, because the entire image
information (brightness information, actually) is preserved.



2.1 The Classic LSI Method as an Extension to the Vector Model

The origin of LSI (latent semantics indexing) method is in the area of text
retrieval [1], while the main intent was an attempt to eliminate the negative
aspects of classic vector model [8,2]. A text collection consists of m unique terms
and each of the n documents in the collection is represented by an m-dimensional
vector of frequencies (or weights) of terms in that document. The entire collection
is represented by a matrix A, in a similar way as we have mentioned above. Using
the singular-value decomposition (SVD) of the matrix A

A=UxVvT

we obtain so-called concept vectors (left-singular vectors — the columns in U),
which can be interpreted as individual (semantic) topics present in the collection.
The concept vectors form a basis in the original high-dimensional vector space,
while they are actually linear combinations of terms (the terms are supposed as
independent). An important property of the SVD is a fact that concept vectors
are ordered according to their ”significance”, which is defined by values of the
singular values o; stored in ascending order in the diagonal matrix X. Informally,
the concept significance says in what quantity is the appropriate concept globally
present (or missing) in the collection. It also says which concepts are semantically
important (that is where the ”latent semantics” comes from) and which are not
— such unimportant concepts are, in fact a ”semantic noise”. The columns of
XVT contain document vectors (the pseudo-document vectors), but which are
now represented in the basis U, i.e. in the concept basis (unlike the original
term basis). Every pseudo-document vector describes a linear combination of
the concept vectors, i.e. the appropriate document consists somehow (positively
or negatively) of every concept found.

Since only first k concepts can be considered are semantic important (the
singular values are high), we can approximate the decomposition as

A USVE

where Uy contains the first k¥ most important concept vectors, X contains the
respective singular values and X VkT contains the pseudo-document vectors rep-
resented using the first k concept vectors (see Figure 3). In other words, by SVD
the original m-dimensional vectors are projected into a vector space of dimen-
sion k (k < m). The SVD approximation (so-called rank-k SVD) can be created
either by ”trimming” the full-SVD matrices or by usage of a special method
designed to perform directly rank-k SVD, like Lanczos or Arnoldi.

For the retrieval of documents we compare the pseudo-document vectors with
the pseudo-query vector using a similarity measure (e.g. the cosine measure, used
in the classic vector model as well as by LSI). In order to compare the pseudo-
document vectors, we need to project the query vector ¢ (which is represented
the same way as the document vectors in A) into the concept basis, i.e. by Ul'q.
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Fig. 3. The SVD approximation (rank-k SVD).

2.2 An LSI for image databases

Since the SVD can be applied to any matrix (i.e. to any static vector set of fixed
dimension), the LSI method is applicable to feature vectors of any kind of data.
The interpretation of matrix A as a term-by-document matrix is purely a matter
of application, i.e. an application to the vector model in text retrieval. However,
we can generally adopt the LSI method for indexing of any multimedia database
which is representable by a set of vectors (of equal dimension). Moreover, it does
not matter which kind of extraction was used to construct the vectors — we only
require to build the matrix A such that the feature vectors of the indexed objects
are stored as columns.

In our case, there is no obstacle to build the matrix A from the ”brightness
vectors”, as we have described at the beginning of the section. Using SVD we
decompose the matrix A the same way as a text collection is indexed, i.e. we get
the decomposition approximation A ~ U, X, V,I'. What is interesting specifically
to this application is the interpretation and mainly visualization of the concept
vectors (the U basis), which represents some set of ”base images”, from which
every image in the database is composed (see Figure 4). In other words, with
a suitable linear combination of the base images we can reconstruct any of the
images in the database (the higher k, the more precise image reconstruction).

At this point we can notice a certain connection with the discrete cosine
transformation (DCT), used in the JPEG compression, where e.g. 64 base images
are used to represent image blocks of size 8 x 8, however, these 64 base images
are fixed (combinations of discrete cosines with different frequencies) and can be
generated independently.

In Figure 4 see several most significant base images — these can be inter-
preted as follows. The first base image is just the average brightness in the
entire database (average brightness of buildings). The next bases represent the
coarse shapes (building silhouettes, transition between buildings and the back-
ground or sky), and the bases with lowest singular values o; (i.e. with the higher
order %) constantly include more and more of finer details present in images (e.g.
window and door shapes).
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Fig. 4. Base images (visualization of concepts — singular vectors, respectively) with the
appropriate order of singular values o;.

Image reconstruction In order to get an idea of how big (or small) % is yet
(still) sufficient to describe the semantic content of an image, we can reconstruct
and visualize the decomposition of A by A ~ Uy X V,I.

In Figure 5a we see the original images, which have been perfectly recon-
structed by the full SVD A = UXVT (where k is maximal, i.e. the rank of the
matrix A). On the other side, for very small k the reconstruction is very bad,
see Figure 5b, where k = 15. However, even this imperfect reconstruction gives
an information about silhouettes of the buildings. We must realize that the re-
constructed image is a combination of only 15 base images, i.e. instead of 4800
pixels we need just 15 concept weights! In case of &k = 50 (see Figure 5¢) the
reconstruction is better, we can recognize some coarse details, e.g. the windows.
For k = 250 the reconstruction is on such level that we can identify the original
images (see Figure 5d).

The above example gives us some guidelines for the content-based retrieval.
If we want to consider just the coarse shapes, it is appropriate to use first few
coordinates of pseudo-image vectors. On the other side, in case we want to search
according to details, we choose a greater number of coordinates, i.e. a higher k.

Note: The example also shows the capability of SVD as a compression method
for the entire image database — the advantage over JPEG (DCT, respectively) is
a fact that the base images are made-to-measure to the particular database being
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Fig.5. (a) A sample of the original images. Reconstruction of the images from the
rank-k approximation A =~ Uy X, VT for (b) k = 15, (c) k = 50, and (d) k = 250.

compressed (not just simple combinations of cosines), which should be reflected
in a smaller number of base images needed for a good quality reconstruction.
A disadvantage is the need to store the ”base image lexicon” together with the
pseudo-image vectors.

2.3 Measuring the Image Similarity

After we get the set of pseudo-image vectors, we need to compare the vectors
with the pseudo-query vector, in order to evaluate a similarity query. Generally,
there exist many similarity measures in the area of similarity search, some of
them even have no analytic representation, just an algorithmical one.

In case of color/brightness histograms on images there is often used the
quadratic form distance [9, 15], where the relation between different colors is cap-
tured by correlation weights between individual vector coordinates. The quadratic
form distance is, in fact, a generalization of the well-known Euclidean distance
where the correlation between different coordinates are zero, i.e. all dimensions
are considered as independent.

Since the images are modeled by pseudo-image vectors which dimensions are
inherently independent (the coordinates contain weights of concepts — the con-
cepts form a basis, so they are linearly independent), and so it is sufficient to
use the Euclidean distance, or another Minkowski (L,) metric. The similarity
modeled by distance is interpreted such that distant vectors are not very similar,
while close vectors are highly similar. The zero distance means the respective



two images (or an image and a query image) are identical. The Euclidean dis-
tance is advantageous in satisfying the metric properties, thus the entire image
database (the derived vector set, respectively) can be indexed by metric access
methods [19, 5], which have been designed to provide an efficient retrieval from
multimedia databases modeled in metric spaces. The efficiency of retrieval is
usually measured by two factors — the number of I/O operations (disk access
costs) and the number of distance computation (computation costs).

3 M-tree

The M-tree [6,10, 17, 19] is one of the metric access methods, allowing to index a
collection of objects modeled in a metric space M = (U, d), where U is an object
universe (e.g. a vector space, in our case) and d is a metric. Like other indexing
structures, also the structure of M-tree is based on the concept of Bt-tree, i.e. it
is a balanced, dynamic and paged (easily persistent) structure. A particular M-
tree index represents a hierarchy of spherical metric regions (each M-tree node
maps to a single region), and the whole M-tree is a hierarchy of that regions.

3.1 Structure of M-tree

The M-tree leaf nodes store so-called ground entries grnd(O;) (the indexed ob-
jects themselves), while the inner nodes store routing entries rout(O;). Each
routing entry describes a spherical metric region, which is an area in the met-
ric space where the objects indexed in the appropriate subtree are located. The
shape and location of every metric region is given by a hyper-sphere centered
in an data object O; and bounded by a covering radius ro,. In Figure 6 see an
example of hierarchy of metric regions (using Euclidean distance and 2D space)
and the respective M-tree.

routy(Op)
rout,(

rout,(O; )
rout (O

Fig. 6. A hierarchy of metric regions and the respective M-tree.



3.2 Querying the M-tree

The indexing of objects in M-tree is based purely on mutual object-to-object
distances (using the metric d), due to which we can easily implement the two
basic types of similarity queries — the range query and the h nearest neighbors
query (h-NN query)?. The range query selects all such indexed objects for which
the distance to the query object is smaller than a distance threshold (or query
radius). The h-NN query selects the h closest objects to the query object.

The higher efficiency (performance) of searching with M-tree, when related
to the simple sequential scan, relies in filtering of those branches of M-tree index,
which do not intersect the query region (and thus cannot contain any relevant
objects). The correctness of filtering is guaranteed by metric properties, espe-
cially by the triangular inequality, which is the essential property used by all
metric access methods.

3.3 An Application of M-tree for Image Retrieval

The M-tree can index any collection which is represented in metric space, so
we can safely use M-tree also for indexing of the pseudo-image vectors accord-
ing to the FEuclidean distance. The similarity search in the image database is
accomplished by range and h-NN queries.

4 Experimental Results

We have performed several retrieval effectiveness and efficiency experiments on
the database of 730 building images. Regarding the effectiveness point of view,
we have examined the benefits of the feature extraction using LSI, i.e. what
quality of retrieval can be achieved when using pseudo-image vectors and the
Euclidean distance. The efficiency experiments were aimed to measure the I/0O
and computation costs when querying using the M-tree.

4.1 Retrieval Effectiveness

The image database consisted of 146 groups of buildings, each building was shot
5 times from different angles of view (see an example in Figure 7). Therefore,
we have decided for the identification task, which is one of the hardest ones.
Naturally, the entire database of 730 images was indexed, the clustering into
groups was just logical (or semantic).

We have randomly selected 50 groups of buildings, from each group a single
image was randomly chosen and a 4-NN query executed against this image. We
have expected that rest of the images in each respective group will be returned by
the query. So, if the result included all 4 images, the precision of the answer was
100%, if only 3 correct images were included, the precision was 75%, and so on.

2 The parameter is usually labeled as k, i.e. we speak about k-NN queries, however, we
have introduced k for rank-k SVD, so for queries we will use h to avoid a confusion.



Fig. 7. A group of images showing the same building from different angles of view.

Although the order of images in the query result matters, in our ”identification”
scenario it was sufficient to have the correct image in the result, regardless of
the similarity order, because the query result was quite small. The recall of the
answer have always matched the precision, since the size of query result was
equal to the number of relevant images in the database, i.e. 4.

Query image Result of 4-NN query (for k=15)

H BN BN BN BN B .
-

‘------------
dist=0.0 dist = 924.1 dist = 990.0 dist = 991.4 dist = 1031.3

Result of 4-NN query (for k=50 and k=250)
- -

--
dist = 998.7 dist = 1018.8 dist = 1040.4 dist = 1166.2

Fig. 8. The query result for the first query.

In Figure 8 see an example of query, for different values of & (i.e. for image
description using k base images). The precision of answer was 50% for k = 50,
moreover, for k = 250 the desired building occupied the first two places in the
ordering.

In Figure 9 see a 4-NN query for another image. The precision of answer
was again 50% for k = 15, however, for k = 50 and k = 250 it was only 25%.
This result could seem to be in contrast with what we have said about the
quality of reconstruction, i.e. where the higher k was better for the quality of
a reconstructed image — so we would expect that a higher k£ will lead also to
a better precision when searching. However, such an expectation is not quite
well-founded, because (as we have discussed in section 2.2), the more significant



(i.e. frequent) base images represent the coarse shapes, while the less significant
ones represent various details. In the second query, the higher k caused a mis-
match between LSI and the human perception of similarity, because the details
percieved by human are of another kind than those captured by high-order base
images obtained by SVD. On the other side, the same effect is responsible for
ordering the really relevant image down to the fourth place.

(for k=15)

CELE L L L L L L L L L
dist=0.0 dist = 704.7 dist = 735.0 dist = 824.29 dist = 847.6

Result of 4-NN query (for k=50 and k=250)
- . N ----T-'---I

dist = 953.5 dist = 967.3 dist = 969.9 dist = 1008.7

Fig. 9. The query result for the second query.

Summary The average precision for the 50 4-NN queries was 43% (i.e. 1-2
correct images in every query result), while the best results were achieved with
k = 15. The precision 43% can be evaluated as very good if we realize that every
building was often shot from very different angles of view. This observation also
leads us to a hypothesis that LSI is quite resistant to spatial transformation in
the images. If we relax the identification requirement such that it is sufficient to
have a single occurence of the correct building in the query result, we would get
almost 100% identification precision.

4.2 Retrieval Efficiency

In the second set of experiments we have examined the retrieval costs when
using M-tree. A tree M-tree indices were built, for £k = 15,k = 50,k = 250,
respectively, i.e. each k-dimensional vector set was indexed by a single index.
The M-tree index construction was guided by MinMax + MultiWay method (for
details we refer to [17,16]). The results of query processing are presented in Table
1. The node capacity was set to 10 vectors, while the average node utilization
reached about 70% (denoted as UTIL in the table).



We have measured the number of disk accesses to the nodes (denoted as I/0
in the table) and the number of distance computation (denoted as COMP in
the table). The costs are represented in percentage, standing for a proportion
of costs needed by (a) the entire M-tree traversal, or (b) the simple sequential
scan over the vector set. We measured average, minimum and maximum values
of costs (for the 50 4-NN queries).

Table 1. The efficiency of search using M-tree.

UTIL 4-NN queries
El % I/0 COMP I/0 COMP
% of M-tree | % of M-tree | % of seq. % of seq.
Avg Min Maz|Avg Min Mazx| Avg Min Max|Avg Min Max,
15| 68 |54 17 76 |41 11 58 {93 29 13148 13 68
50| 71 |63 29 88|49 20 74 (104 48 14558 24 88
250/ 70 |65 24 91 |51 16 75 |112 41 157|60 19 88

Summary As we can see in the table, the best results were achieved for k = 15,
where the half of the M-tree index was needed to access, which is equivalent to
93% of the sequential file. The number of distance computation was lower, 48%
computations needed by sequential scanning. The efficiency presented result are
not quite convincing, however, it must be recalled that the image database was
very small (just 730 images). In the future we would like to try this method on
much larger databases, say of tens or thousands images, where the potential of
M-tree could be enforced in much greater extent.

5 Conclusions

In this article we have introduced specific application of LSI into the area of im-
age retrieval, together with the usage of M-tree serving as an indexing structure
for efficient retrieval. Due to the application to image databases, we have also
visualized some interesting aspects of LSI, which are not directly obvious when
using LST in the original area of text retrieval.
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