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Abstract. Preferences can be used for information filtering and extrac-
tion to deliver the most relevant data to the user. Therefore the efficient
integration of querying with preferences into standard database technol-
ogy is an important issue. The paper resumes a logical framework for for-
mulating preferences and their embedding into relational algebra through
a single preference operator parameterized by a set of user preferences
of sixteen various kinds and returning only the most preferred subsets
of its argument relation. Most importantly, preferences between sets of
elements can be expressed. To make a relational query language with the
preference operator useful for practical applications, formal foundation
for algebraic optimization, applying heuristics like push preference, has
to be provided. Therefore abstract properties of the preference opera-
tor and a variety of algebraic laws describing its interaction with other
relational algebra operators are presented.
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1 Introduction

If users have requirements that are to be satisfied completely, their database
queries are characterized by hard constraints, delivering exactly the required ob-
jects if they exist and otherwise empty result. This is how traditional database
query languages treat all the requirements on the data. However, requirements
can be understood also in the sense of wishes: in case they are not satisfied,
database users are usually prepared to accept worse alternatives and their data-
base query is characterized by soft constraints. Requirements of the latter type
are called preferences.

Preferences are ubiquitous in our daily lives, which suggests that database
query languages should support both views of requirements, characterized by

� This work was supported by the project 1ET100300419 of the Program Information
Society (of the Thematic Program II of the National Research Program of the Czech
Republic) “Intelligent Models, Algorithms, Methods and Tools for the Semantic Web
Realization”, and by the Institutional Research Plan AV0Z10300504 “Computer
Science for the Information Society: Models, Algorithms, Applications”.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 388–399, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Algebraic Optimization of Relational Queries 389

hard or soft constraints. The research on preferences is extensive and encom-
passes preference logic, preference reasoning, non-monotonic reasoning, and, re-
cently, preferences also attracted attention in database community (see Sect. 5).

Building on a logical framework for formulating preferences and on their em-
bedding into relational algebra (RA) through a single preference operator (PO)
to combat the empty result and the flooding effects, this paper presents an
approach to algebraic optimization of relational queries with various kinds of
preferences. The PO selects from its argument relation the best-matching al-
ternatives with regard to user preferences, but nothing worse.1 Preferences are
specified using a propositional logic notation and their semantics is related to
that of a disjunctive logic program. The language for expressing preferences i) is
declarative, ii) includes various kinds of preferences, iii) is rich enough to ex-
press preferences between sets of elements, iv) and has an intuitive, well defined
semantics allowing for conflicting preferences.

In Sect. 2, the above mentioned framework for formulating preferences and
in Sect. 3 an approach to their embedding into RA are revisited. Presenting
a variety of algebraic laws that describe interaction with other RA operators
to provide a formal foundation for algebraic optimization, Sect. 4 provides the
main contribution of this paper.2 A brief overview of related work in Sect. 5 and
conclusions in Sect. 6 end this paper. All the nontrivial proofs are given.

To improve the readability, � (x, y) ∧ ¬ � (y, x) and � (x, y)∧ � (y, x) is
substituted by � (x, y) and = (x, y), respectively.

2 User Preferences

A user preference is expressed by a preference statement, e.g. “a is preferred to
b”, or symbolically by an appropriate preference formula (PF). PF’s comprise
a simple declarative language for expressing preferences. To capture its declara-
tive aspects, model-theoretic semantics is defined: considering a set of states of
affaires S and a set W = 2S of all its subsets – worlds, if M = 〈W, �〉 is an
order � on W such that w � w′ holds for some worlds w, w′ from W , then M
is termed a preference model (PM) of w > w′ – a preference of the world w over
the world w′, which we express symbolically as M |= w > w′.

The basic differentiation between preferences is based on notions of optimism
and pessimism. Defining a-world as a world in which a occurs, if we are optimistic
about a and pessimistic about b for example, we expect some a-world to precede
at least one b-world in each PM of a preference statement “a is preferred to b”.
This kind of preference is called opportunistic. By contrast, if we are pessimistic
about a and optimistic about b, we expect every a-world to precede each b-world
in each PM of a preference statement “a is preferred to b”. This kind of preference
is called careful. Alternatively, we might be optimistic or pessimistic about both
a and b. Then we expect some a world to precede each b-world or each a-world
1 A similar concept was proposed by Kießling et al. [1,2] and Chomicki et al. [3] and,

in a more restricted form, by Börzsönyi et al. [4] (for more detail refer to Sect. 5).
2 The presented results correspond to those of [3].
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to precede some b-world in each PM of a preference statement “a is preferred
to b”. This kind of preference is called locally optimistic or locally pessimistic,
respectively. Locally optimistic, locally pessimistic, opportunistic and careful
preferences are symbolically expressed by PF’s of the form: a M>M b, a m>m b,
a M>m b, and a m>M b, respectively.

Also, we distinguish between strict and non-strict preferences. For example,
if w precedes w′ strictly in a PM, then we strictly prefer w to w′.

In addition, we distinguish between preferences with and without ceteris
paribus proviso – a notion introduced by von Wright [5] and generalized by Doyle
and Wellman [6] by means of contextual equivalence relation – an equivalence
relation on W .3 For example, a PM of a preference statement “a is carefully pre-
ferred to b ceteris paribus” is such an order on W that a-worlds precede b-worlds
in the same contextual equivalence class. Specifically, the preference statement
“I prefer playing tenis to playing golf ceteris paribus” might express by means
of an contextual equivalence that I prefer playing tenis to playing golf only if
the context of weather is the same, i.e., it is not true that I prefer playing tenis
in strong winds to playing golf during a sunny day.

Next, we revisit the basic definitions introducing syntax and model-theoretic
semantics of the language for expressing user preferences:

Definition 1 (Language). Propositional formulas are defined inductively:
Given a finite set of propositional variables p, q, . . . i) every propositional vari-

able is a propositional formula; ii) if ϕ, ψ are propositional formulas then so are
ϕ ∧ ψ and ¬ϕ.

PF’s are expressions ϕ x>y ψ and ϕ x≥y ψ for x, y ∈ {m, M}, where ϕ, ψ
are propositional variables.

If we identify propositional variables with tuples over a relation schema R, then
we get PF’s over R. A relation instance I(R), i.e., a set of tuples over R, creates
a world w, an element of a set W .

The PM is defined so that any set of (possibly conflicting) preferences is
consistent: the partial pre-order, i.e., a binary relation which is reflexive and
transitive, in the definition of the PM, enables to express some kind of conflict
by incomparability:

Definition 2 (Preference model). A PM M = 〈W, �〉 over a relation schema
R is a couple in which W is a set of worlds, relation instances of R, and � is a
partial pre-order over W , the preference relation over R.

A set of user preferences of various kinds can by represented symbolically by a
preference specification (PS), which corresponds to an appropriate complex PF
in the above defined language.

Definition 3 (Preference specification). Let R be a relation schema and P�
a set of PF’s over R of the form {ϕi � ψi : i = 1, . . . , n}. A PS P over R is
3 As it has been shown [7] that any preference with contextual equivalence specification

can be expressed by a set of preferences without contextual specification, we can
restrict ourselves only to preferences without ceteris paribus proviso.
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a tuple 〈P�|� ∈ { x>y, x≥y |x, y ∈ {m, M}}〉, and M is its model, i.e., a PS
model, iff it models all elements P� of the tuple. Interpreting

M |= P� ⇐⇒ ∀(ϕi � ψi) ∈ P� : M |= ϕi � ψi .

3 Preference Operator

To embed preferences into RQL, the PO ωP returning only the best sets of tuples
in the sense of user preferences P is defined:

Definition 4 (Preference operator). The PO ω is a mapping from a pow-
erset into itself. Specifically, if R is a relation schema, P a PS over R, and M
the set of its models; then the PO ωP is defined for all sets {I1(R), . . . , In(R)}
of instances of R as follows:

ωP({I1(R), . . . , In(R)}) =
{
w ∈ {I1(R), . . . , In(R)}

∣
∣

∃Mk = 〈W, �k〉 ∈ M , ∀w′ ∈ {I1(R), . . . , In(R)} : �k (w′, w) ⇒ �k (w, w′)
}

.

Remark 1 (Preference operator notation). For brevity, when writing the argu-
ment without braces, e.g., ωP(I(R)), then the unabbreviated notation is
ωP({2I(R)}), showing that the argument is the powerset of I(R).

3.1 Basic Properties

The following propositions are essential for investigation of algebraic properties
describing interaction of the PO with other RA operations:

Proposition 1. Given a relation schema R and a PS P over R, for all instances
I(R) of R the following properties hold:

ωP(I(R)) ⊆ 2I(R) ,

ωP ({ωP(I(R))}) = ωP(I(R)) ,

ωPempty(I(R)) = 2I(R) ,

where Pempty is the empty PS, i.e., containing no preference.

The PO is not monotone or antimonotone with respect to its relation argument.
However, partial antimonotonicity holds:

Proposition 2 (Partial antimonotonicity). Given a relation schema R and
a PS P over R, for all instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R) ⇒ 2I(R) ∩ ωP(I ′(R)) ⊆ ωP(I(R)) .

Proof. Assume w ∈ 2I(R) ∩ ωP(I ′(R)). It follows that w ⊆ I(R) and from the
definition (Def. 4) of the PO w ⊆ I ′(R) ∧ ∃Mk ∈ M s.t. ∀w′ ∈ W : w′ ⊆
I ′(R)∧ �k (w′, w) ⇒�k (w, w′). As I(R) ⊆ I ′(R), we can conclude that ∃Mk ∈
M s.t. ∀w′ ∈ W : w′ ⊆ I(R)∧ �k (w′, w) ⇒�k (w, w′), which together with
w ⊆ I(R) implies w ∈ ωP(I(R)). ��
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The following theorems enable to reduce cardinality of an argument relation of
the PO without changing the return value and ensure that the empty query
result effect is successfully eliminated:

Theorem 1 (Reduction). Given a relation schema R, a PS P over R, for all
instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R) ∧ ωP(I ′(R)) ⊆ 2I(R) ⇒ ωP(I(R)) = ωP(I ′(R)) .

Proof. ⊆: Assume w ∈ ωP(I(R)). Then, it follows from the definition of the
PO w ⊆ I(R) ∧ ∃Mk ∈ M s.t. ∀w′ ⊆ I(R) : �k (w′, w) ⇒ �k (w, w′). The
assumption ωP(I ′(R)) ⊆ 2I(R) implies ∀w′ ∈ 2I′(R) − 2I(R) : ¬ �k (w′, w),
and we can conclude ∀w′ ⊆ I ′(R) : �k (w′, w) ⇒ �k (w, w′), which together
with the assumption I(R) ⊆ I ′(R) implies w ⊆ I ′(R) ∧ ∃Mk ∈ M s.t.
∀w′ ⊆ I ′(R) : �k (w′, w) ⇒ �k (w, w′), the definition of w ∈ ωP(I ′(R)).

⊇: Immediately follows from Prop. 2. ��

Theorem 2 (Non-emptiness). Given a relation schema R, a PS P over R,
then for every finite, nonempty instance I(R) of R, ωP(I(R)) is nonempty.

3.2 Multidimensional Composition

In multidimensional composition, we have a number of PS defined over several
relation schemas, and we define PS over the Cartesian product of those relations:
the most common ways are Pareto and lexicographic composition.

Definition 5 (Pareto composition). Given two relation schemas R1 and R2,
PS’s P1 over R1 and P2 over R2, and their sets of models M1 and M2, the Pareto
composition P (P1, P2) of P1 and P2 is a PS P0 over the Cartesian product
R1 × R2, whose set of models M0 is defined as:

∀Mm = 〈W1 × W2, �m〉 ∈ M0,

∃Mk = 〈W1, �k〉 ∈ M1, ∃Ml = 〈W2, �l〉 ∈ M2 s.t.

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2 :
�m (w1 × w2, w

′
1 × w′

2) ≡ �k (w1, w
′
1) ∧ �l (w2, w

′
2) .

Definition 6 (Lexicographic composition). Given two relation schemas R1
and R2, PS’s P1 over R1 and P2 over R2, and their sets of models M1 and
M2, the lexicographic composition L(P1, P2) of P1 and P2 is a PS P0 over the
Cartesian product R1 × R2, whose set of models M0 is defined as:

∀Mm = 〈W1 × W2, �m〉 ∈ M0,

∃Mk = 〈W1, �k〉 ∈ M1, ∃Ml = 〈W2, �l〉 ∈ M2 s.t.

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2 :

�m (w1 × w2, w
′
1 × w′

2) ≡ �k (w1, w
′
1) ∨ (=k (w1, w

′
1)∧ �l (w2, w

′
2)) .
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4 Algebraic Optimization

As the PO extends RA, the optimization of queries with preferences can be
realized as an extension of a classical relational query optimization. Most im-
portantly, we can inherit all well known laws from RA, which, together with
algebraic laws governing the commutativity and distributivity of the PO with
respect to RA operations, constitute a formal foundation for rewriting queries
with preferences using the standard strategies (push selection, push projection)
aiming at reducing the sizes of intermediate relations.

Remark 2 (RA operators notation). In the following, RA selection and projec-
tion are generalized so that they can operate on set arguments, denoted by
braces, e.g., σϕ({ωP(I(R))}). The corresponding definitions are indicated by def=.

4.1 Commuting with Selection

The following theorem identifies a sufficient condition under which the PO com-
mutes with RA selection:

Theorem 3 (Commuting with selection). Given a relation schema R, a PS
P over R, the set of its PM’s M , and a selection condition ϕ over R, if

∀Mk = 〈W, �k〉 ∈ M , ∀w, w′ ∈ W : �k (w′, w) ∧ w = σϕ(w) ⇒ w′ = σϕ(w′)

is a valid formula, then for any relation instance I(R) of R:

ωP (σϕ(I(R))) = σϕ({ωP(I(R))})
def
= {w ∈ ωP(I(R))|σϕ(w) = w} .

Proof. Observe that:

w ∈ ωP(σϕ(I(R))) ≡ w ⊆ I(R) ∧ σϕ(w) = w ∧
¬(∀Mk ∈ M , ∃w′ ⊆ I(R) : (σϕ(w′) = w′∧ �k (w′, w)) .

w ∈ σϕ({ωP(I(R))}) ≡ w ⊆ I(R) ∧ σϕ(w) = w ∧
¬(∀Mk ∈ M , ∃w′ ⊆ I(R) : �k (w′, w)) ,

Obviously, the second formula implies the first. To see that the opposite implica-
tion also holds, we prove that w �∈ σϕ({ωP(I(R))}) ⇒ w �∈ ωP(σϕ(I(R))). There
are three cases when w �∈ σϕ({ωP(I(R))}). If w � I(R) or σϕ(w) �= w, it is
immediately clear that w �∈ ωP(σϕ(I(R))). In the third case, ∀Mk ∈ M , ∃w′ ⊆
I(R) : �k (w′, w). However, due to the theorem assumption, ∀Mk ∈ M , ∃w′ ⊆
I(R) : σϕ(w′) = w′∧ �k (w′, w), which completes the proof. ��

4.2 Commuting with Projection

The following theorem identifies sufficient conditions under which the PO com-
mutes with RA projection. To prepare the ground for the theorem, some defini-
tions have to be introduced:
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Definition 7 (Restriction of a preference relation). Given a relation
schema R, a set of attributes X of R, and a preference relation � over R,
the restriction θX(�) of � to X is a preference relation �X over πX(R) defined
using the following formula:

�X (wX , w′
X) ≡ ∀w, w′ ∈ W : πX(w) = wX ∧ πX(w′) = w′

X ⇒ � (w, w′) .

Definition 8 (Restriction of the preference model). Given a relation sche-
ma R, a set of relation attributes X of R, and a PM M = 〈W, �〉 over R, the
restriction θX(M) of M to X is a PM MX = 〈WX , �X〉 over πX(R) where
WX = {πX(w) | w ∈ W}.

Definition 9 (Restriction of the preference operator). Given a relation
schema R, a set of attributes X of R, a PS P over R, and the set MX of its
models restricted to X, the restriction θX(ωP) of the PO ωP to X is the PO ωX

P
defined as follows:

ωX
P (πX(I(R))) = {wX ⊆ πX(I(R)) | ∃MX ∈ MX s.t.

∀w′
X ⊆ πX(I(R)) : �X (w′

X , wX) ⇒ �X (wX , w′
X)} .

Theorem 4 (Commuting with projection). Given a relation schema R, a
set of attributes X of R, a PS P over R, and the set of its PM’s M , if the
following formulae

∀Mk ∈ M , ∀w1, w2, w3 ∈ W :
πX(w1) = πX(w2) ∧ πX(w1) �= πX(w3) ∧ �k (w1, w3) ⇒ �k (w2, w3) ,

∀Mk ∈ M , ∀w1, w3, w4 ∈ W :
πX(w3) = πX(w4) ∧ πX(w1) �= πX(w3) ∧ �k (w1, w3) ⇒ �k (w1, w4)

are valid, then for any relation instance I(R) of R:

ωX
P (πX(I(R))) = πX({ωP(I(R))})

def
= {πX(w) | w ∈ ωP(I(R))} .

Proof. We prove: πX(w) �∈ ωX
P (πX(I(R))) ⇐⇒ πX(w) �∈ πX({ωP(I(R))}).

⇒: Assume πX(w3) �∈ ωX
P (πX(I(R))). The case πX(w3) � πX(I(R)) is triv-

ial. Otherwise, it must be the case that ∀MX ∈ MX , ∃wX ⊆ πX(I(R)) :
�X (wX , πX(w3)), which implies ∀Mk ∈ M , ∀w1, w4 ∈ W : πX(w1) =
wX ∧πX(w4) = πX(w3) ⇒ �k (w1, w4) and thus πX(w3) �∈ πX({ωP(I(R))}).

⇐: Assume πX(w3) �∈ πX({ωP(I(R))}). Then ∀Mk ∈ M and ∀w4 ⊆ I(R)
s.t. πX(w4) = πX(w3), there is w1 ⊆ I(R) s.t. �k (w1, w4) and πX(w1) �=
πX(w4). From the assumption of the theorem, it follows that ∀w2, w4 ⊆
I(R) : πX(w2) = πX(w1) ∧ πX(w4) = πX(w3) ⇒ �k (w2, w4), which implies
θX(�k)(πX(w1), πX(w3)) and thus πX(w3) �∈ ωX

P (πX(I(R))). ��
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4.3 Distributing over Cartesian Product

For the PO to distribute over the Cartesian product of two relations, the PS,
which is the parametr of the PO, needs to be decomposed into the PS’s that will
distribute into the argument relations. We obtain the same property for both
Pareto and lexicographic composition:

Theorem 5 (Distributing over Cartesian product). Given two relation
schemas R1 and R2, and PS’s P1 over R1 and P2 over R2, for any two relation
instances I(R1) and I(R2) of R1 and R2:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = P (P1, P2) is a Pareto composition of P1 and P2.

Proof. We prove:

w1 × w2 �∈ ωP0(I(R1) × I(R2)) ⇐⇒ w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)) .

⇒: Assume w1 × w2 �∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0,
there are w′

1 ⊆ I(R1), w′
2 ⊆ I(R2) s.t. �m (w′

1 ×w′
2, w1 ×w2). Consequently,

∀Mk ∈ M1, ∀Ml ∈ M2, models of P1 and P2, there are w′
1 ⊆ I(R1), w′

2 ⊆
I(R2) s.t. �k (w′

1, w1) or �l (w′
2, w2), which implies w1 �∈ ωP1(I(R1)) or

w2 �∈ ωP2(I(R2)) and thus w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)).
⇐: Assume w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 �∈ ωP1(I(R1)) or

w2 �∈ ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there
must be w′

1 ⊆ I(R1) s.t. �k (w′
1, w1). Consequently, ∀Mm ∈ M0, models

of P0, ∃w′
1 ⊆ I(R1) : �m (w′

1 × w2, w1 × w2), which implies w1 × w2 �∈
ωP0(I(R1) × I(R2)). The second case is symmetric. ��

Theorem 6 (Distributing over Cartesian product). Given two relation
schemas R1 and R2, and PS’s P1 over R1 and P2 over R2, for any two relation
instances I(R1) and I(R2) of R1 and R2:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = L(P1, P2) is a lexicographic composition of P1 and P2.

Proof. We prove:

w1 × w2 �∈ ωP0(I(R1) × I(R2)) ⇐⇒ w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)) .

⇒: Assume w1 × w2 �∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0,
there are w′

1 ⊆ I(R1), w′
2 ⊆ I(R2) s.t. �m (w′

1 ×w′
2, w1 ×w2). Consequently,

∀Mk ∈ M1, ∀Ml ∈ M2, models of P1 and P2, there are w′
1 ⊆ I(R1), w′

2 ⊆
I(R2) s.t. �k (w′

1, w1) or =k (w′
1, w1) ∧ �l (w′

2, w2), which implies w1 �∈
ωP1(I(R1)) or w2 �∈ ωP2(I(R2)) and thus w1×w2 �∈ ωP1(I(R1))×ωP2(I(R2)).
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⇐: Assume w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 �∈ ωP1(I(R1)) or
w2 �∈ ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there
must be w′

1 ⊆ I(R1) s.t. �k (w′
1, w1). Consequently, ∀Mm ∈ M0, models of

P0, there must be w′
1 s.t. �m (w′

1 × w2, w1 × w2), which implies w1 × w2 �∈
ωP0(I(R1) × I(R2)). The second case is symmetric. ��

The equality ωPempty(I(R)) = 2I(R) and both Theorem 5 and Theorem 6 make
it possible to derive the transformation rule that pushes the PO with a one-
dimensional PS down the appropriate argument of the Cartesian product:

Corollary 1. Given two relation schemas R1 and R2, a PS’s P1 over R1, and
an empty PS P2 over R2, for any two relation instances I(R1) and I(R2) of R1
and R2, the following property holds:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × 2I(R2) def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ⊆ I(R2)} ,

where P0 = P (P1, P2) is a Pareto of lexicographic composition of P1 and P2.

4.4 Distributing over Union

The following theorem shows how the PO distributes over RA union:

Theorem 7 (Distributing over union). Given two compatible relation
schemas4 R and S, and a PS P over R (and S), if the following formula

ωP(I(R) ∪ I(S)) ⊆ 2I(R) ∪ 2I(S)

is valid for relation instances I(R) and I(S) of R and S, then:

ωP(I(R) ∪ I(S)) = ωP({ωP(I(R)) ∪ ωP(I(S))}) .

Proof. It follows from Proposition 1 that ωP(I(R))∪ωP (I(S)) ⊆ 2I(R) ∪2I(S) ⊆
2I(R)∪I(S). If we show that ωP(I(R) ∪ I(S)) ⊆ ωP(I(R)) ∪ ωP(I(S)), then the
theorem follows from Theorem 1.

If w ∈ ωP(I(R) ∪ I(S)), then it follows from the definition of the PO w ⊆
I(R) ∪ I(S) ∧ ∃Mk ∈ M s.t. ∀w′ ⊆ I(R) ∪ I(S) : �k (w′, w) ⇒ �k (w, w′). As
w ⊆ I(R) ∨ w ⊆ I(S) from the assumption of the theorem and 2I(R) ∪ 2I(S) ⊆
2I(R)∪I(S), we can conclude (w ⊆ I(R) ∨ w ⊆ I(S)) ∧ ∀w′ ∈ 2I(R) ∪ 2I(S) : �k

(w′, w) ⇒ �k (w, w′), implying w ∈ ωP(I(R)) ∪ ωP(I(S)). ��

4.5 Distributing over Difference

Only in the trivial case, the the distribution over RA difference is possible:
4 We call two relation schemas compatible if they have the same number of attributes

and the corresponding attributes have identical domains.
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Theorem 8 (Distributing over difference). Given two compatible relation
schemas R and S, and a PS P over R (and S), if the following formula

ωP(I(R)) ⊆ 2I(R)−I(S) ∪ 2I(S)

is valid for relation instances I(R) �= I(S) of R and S, then:

ωP(I(R) − I(S)) = ωP(I(R)) − ωP(I(S))

iff the PS P is empty.

4.6 Push Preference

The question arises how to integrate the above algebraic laws into the classical,
well-known hill-climbing algorithm. In particular, we want to add heuristic strat-
egy of push preference, which is based on the assumption that early application
of the PO reduces intermediate results. Indeed, the Theorem 1 provides a formal
evidence that it is correct to pass exactly all the tuples that have been included
in any world returned by the PO to the next operator in the operator tree. This
leads to a better performance in subsequent operators.

Example 1. Consider a simple query expressed in RA as: ωP(πX(R ∪ S)). After
applying the preference strategy, we get: πX(ωP({ωP(R) ∪ ωP(S)})). The cor-
responding expression trees are depicted in Fig. 1, where data flow between the
computer’s main memory and secondary storage is represented by line width.

ωP

πX

∪

R S

(a) Before pushing

πX

ωP

∪

ωP ωP

R S

(b) After pushing

Fig. 1. Improving the query plan by pushing PO down the expression tree

We have supposed that relations R and S are too big to fit into main memory.
Using the number of the secondary storage I/O’s as our measure of cost for
an operation, it can be seen that the strategy of pushing the PO improves the
performance in this case significantly.
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5 Related Work

The study of preferences in the context of database queries has been originated by
Lacroix and Lavency [8]. They, however, don’t deal with algebraic optimization.

Following their work, preference datalog was introduced in [9], where it was
shown that the concept of preference provides a modular and declarative means
for formulating optimization and relaxation queries in deductive databases.

Nevertheless, only at the turn of the millennium this area attracted broader
interest again. Kießling [1] and Chomicki et al. [3] have pursued independently a
similar, qualitative approach within which preferences between tuples are spec-
ified directly, using binary preference relations. The embedding into RQL they
have used is similar to ours: they have defined an operator returning only the
best preference matches. However, they, by contrast to the approach presented
in this paper, don’t consider preferences between sets of elements and are con-
cerned only with one type of preference. Moreover, the relation to a preference
logic unfortunately is unclear. On the other hand, both Chomicki et. al. [3]
and Kießling [2,10] have laid the foundation for preference query optimization
that extends established query optimization techniques: preference queries can
be evaluated by extended – preference RA. While some transformation laws for
queries with preferences have been presented in [2,10], the results presented in
[3] are mostly more general.

A special case of the same embedding represents skyline operator introduced
by Börzsönyi et al. [4]. Some examples of possible rewritings for skyline queries
are given but no general rewriting rules are formulated.

In [11], actual values of an arbitrary attribute were allowed to be partially
ordered according to user preferences. Accordingly, RA operations, aggregation
functions and arithmetic were redefined. However, some of their properties were
lost, and the the query optimization issues were not discussed.

6 Conclusions

We build on the framework of embedding preferences into RQL through the
PO that is parameterized by user preferences expressed in a declarative, logi-
cal language containing sixteen kinds of preferences and that returns the most
preferred sets of tuples of its argument relation. Most importantly, the language
is suitable for expressing preferences between sets of elements and its semantics
allows for conflicting preferences.

The main contribution of the paper consists in presenting basic properties
of the PO and a number of algebraic laws describing its interaction with other
RA operators. Particularly, sufficient conditions for commuting the PO with RA
selection or projection and for distributing over Cartesian product, set union, and
set difference have been identified. Thus key rules for rewriting the preference
queries using the standard algebraic optimization strategies like push selection
or push projection have been established. Moreover, a new optimization strategy
of push preference has been suggested.
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Future work directions include identifying further algebraic properties and
finding the best possible ordering of transformations to compose an effective
hill-climbing algorithm for optimization of RA statements with the PO. Also,
expressiveness of RA including the PO and complexity issues have to be ad-
dressed in detail.
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