
How We Think of Computing Today�

Jǐŕı Wiedermann1 and Jan van Leeuwen2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz
2 Department of Information and Computing Sciences, Utrecht University,

Padualaan 14, 3584 CH Utrecht, The Netherlands
j.vanleeuwen@cs.uu.nl

Abstract. Classical models of computation no longer fully correspond
to the current notions of computing in modern systems. Even in the
sciences, many natural systems are now viewed as systems that com-
pute. Can one devise models of computation that capture the notion of
computing as seen today and that could play the same role as Turing
machines did for the classical case? We propose two models inspired from
key mechanisms of current systems in both artificial and natural environ-
ments: evolving automata and interactive Turing machines with advice.
The two models represent relevant adjustments in our apprehension of
computing: the shift to potentially non-terminating interactive compu-
tations, the shift towards systems whose hardware and/or software can
change over time, and the shift to computing systems that evolve in an
unpredictable, non-uniform way. The two models are shown to be equiv-
alent and both are provably computationally more powerful than the
models covered by the old computing paradigm. The models also moti-
vate the extension of classical complexity theory by non-uniform classes,
using the computational resources that are natural to these models. Of
course, the additional computational power of the models cannot in gen-
eral be meaningfully exploited in concrete goal-oriented computations.

Keywords: Turing machines, evolving automata, interactive computa-
tion, non-uniform complexity.

1 Introduction

Can the Internet be simulated, at least in principle, by a Turing machine? Can
the living cell, the brain, and any other natural information processing system
be simulated likewise? The answer is not at all clear and depends very much
on one’s viewpoint. While the Turing machine paradigm is well suited for mod-
eling stepwise computational processes, it may be less suited for modeling the
behaviour of the computational systems as we know them today. What model
� This research was partially supported by project BRICKS in the Netherlands, and

by Institutional Research Plan AV0Z10300504 and grants No. 1ET100300419 and
1ET100300517 within the Czech National Research Program ‘Information Society’.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 579–593, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

580 J. Wiedermann and J. van Leeuwen

of computation could replace the classical Turing machine and serve as the new
paradigm?

The shift from Turing machines to a new computational model should cor-
respond to the shift in thinking about computing in the systems of today. It is
no longer the case that only isolated computers compute. We have no problem
admitting that sensor nets, embedded control systems in all kinds of interact-
ing devices and robots, ‘always operating’ information services, and in fact the
Internet, as a whole, perform computations, albeit in some non-standard way.
Moreover, it is no longer the case that only artificial gadgets compute. Biolo-
gists frequently speak of living cells or entire organisms as complex information
processing systems, as do psychologists in the case of the human mind and so-
ciologists in the case of animal or human societies. Some physicists even believe
that the entire Universe can be viewed in this way [3]. Can there be a single
model of computation covering all these cases, like the Turing machine did for
early computing, or are we deemed to have many different models, tailored to
each case at hand?

In this expository paper we describe a number of computational paradigms
that have emerged in recent years and that lead to ingredients for new models of
computation. We give the background for these paradigms and of some models
that have been based on them. We show that some of these models are indeed,
at least in principle, more powerful than classical computing in the sense that
they are provably computationally more powerful models than those fitting the
old paradigm. The models also enable extensions of classical complexity theory
(cf. [18,19]), showing that our modern notions of computing can lead naturally
into the domain of non-uniform complexity.

2 From Isolated to Interactive Computation

New technologies, from the telegraph to the World Wide Web, have ex-
panded our abilities to communicate widely, flexibly, and efficiently. This
urge to communicate will continue to drive the expanding technology with
the advent of widespread two-way video, wireless connectivity, and high-
bandwidth audio, video, 3-D imaging, and more yet to be imagined.
T. Winograd ([23], 1997).

The way we think of computing is closely related to what we consider to be a
computation.

2.1 Classical Computing

Historically, when arithmetic was invented in the early days of mankind, com-
puting seemed an ability by which only people are endowed. Later, when abaci
and mechanical calculators appeared, it was taken for granted that ‘computing
devices’ are artifacts designed by people. Consequently, computing was perceived
as an activity intrinsic to people or to devices invented by people for that pur-
pose. Computing was seen as an ‘invented’ process, in contrast to the ‘natural’

How We Think of Computing Today 581

processes which were driven by natural laws and which worked ‘by itself’. Com-
puting was something artificial or non-natural: it had to be planned ahead,
streamlined, powered and monitored. Computing devices had a rigorous, regular
and highly organized structure and therefore, had to be engineered with great
ingeniousness. Mainframe-, midi- and minicomputers and the many types of PCs
confirm this view of computing. In theory, their functioning is suitably modeled
by the Turing machine paradigm or by easily simulated models like the random
access machine.

Ever since Turing’s formulation of the model [12] in 1936, classical Turing
machines have dominated the thinking of computing. However, the paradigm of
Turing machines does not only suggest that any process which deserves to be
called algorithmic can be modeled by a Turing machine. There is more to it:
the paradigm also assumes a certain computational scenario which determines
how the machine is used. In classical Turing machines, this scenario requires
that a finite amount of input data is present prior to the start of a computation;
during the computation no new data can be added. The result is to be extracted
after a finite number of steps and only after, and when, the computation has
terminated. This allows one to view a computation as a process that maps finite
input data to finite output data and hence to view a computer as a device
realizing standard mathematical functions, calculating their value given an input
value. Computability theory has been based on this view.

2.2 ‘Always On’ Computing

A different view of computing systems arose when the first automated control
systems emerged. Here the computer was not used to compute function values.
Instead it was used to monitor, to serve, or to process potentially infinite streams
of data. Normally, as in the first computer operating systems and modern ‘al-
ways on’ systems, infinite input streams are presented as un-ending streams of
finite chunks of data. Each chunk is processed according to the Turing machine
paradigm. Aside from mathematical reasons, it inspired computability theory
to study infinite computations, by using Turing machines (or restricted variants
like finite automata) under the generalized scenario of infinite input strings and
infinite output strings. The results were seen as a natural generalization of the
finitary case, not as a revision of the Turing machine paradigm. After all, the
machine model had remained the same, merely the computational scenario had
changed. There is now a refined theory of ω-automata [10], with many applica-
tions in e.g. process theory. In relativistic computing, infinite computations are
seen from yet a different angle [4,21].

2.3 Interactive Computing

From computations over infinite streams of data it is only a small step to interac-
tive computations, where a machine interacts continuously with its environment.
The computational view of interaction was propagated by Wegner [20]. In inter-
active computing we have continuous on-line entry of input data and delivery of

582 J. Wiedermann and J. van Leeuwen

output data. Interactive machines do not have input and output tapes but input
and output ports. Interactive computing principally differs from computing over
infinite streams in two ways. First, in interactive computing we only consider
potentially infinite streams, i.e., streams that are always finite but can be pro-
longed without limit, with unpredictable next inputs at any time. We include
port symbols denoting ‘no input’ and ‘no output’, as valid inputs or outputs in
streams, respectively. Second, a finite delay condition [17] may be required dur-
ing computation, asserting that after any non-empty input symbol a non-empty
output symbol must be produced sometime. Any infinite input string that can
be fed to the interactive machine properly in this way, is called a ‘valid’ input.

The previous conditions mean e.g. that internal and external phases of com-
puting alternate, depending on whether an interactive device needs to do some
finite computation before outputting a non-empty response symbol (or taking in
a new non-empty input) or not. Unlike the scenario of classical machines perform-
ing infinite computations over infinite streams [10], interactive machines cannot
answer questions requiring the processing of infinite streams ‘in the limit’ (such
as ‘is there a finite number of 1’s in the given infinite stream?’). The interac-
tive use of standard stand-alone PCs corresponds well to this view of interactive
machines. The corresponding change in the Turing machine model leads to so-
called interactive Turing machines (ITMs) introduced in [16]. The processing of
infinite streams of symbols by ITMs leads to so-called ‘interactively realizable
translations’ on valid (infinite) input strings, see [18] for formal details.

From the viewpoint of computability theory, interactive computing e.g. with
ITMs does not lead to super-Turing computing power. Interactive computing
merely extends our view of classically computable functions over finite domains
to computable functions (translations) defined over infinite domains. Interactive
computers simply compute something different from non-interactive ones be-
cause they follow a different scenario. Remembering the respective inputs over
time, a finite computation of an interactive machine can always be replayed a
posteriori by a non-interactive machine giving the same outputs as the interac-
tive machine [17].

3 From Interactive to Evolving Computation

Every physical system registers information, and just by evolving in time,
by doing its thing, it changes that information, transforms that informa-
tion, or, if you like, processes that information.
S. Lloyd ([3], 2002).

Data interaction with computers differs from classical computing, as reflected in
the change of computational scenario. Historically it allowed the use of comput-
ers in many more applications than before and thus it extends our apprehension
of computing even though, from a computability point, interactive Turing ma-
chines cannot compute more, i.e. other mappings than non-interactive machines.
A change in computational power can only come from a change of view on the

How We Think of Computing Today 583

functioning of an isolated PC itself. In particular, does it make sense to change
a computing device, or to let it change, during its computation?

Obviously, this feature could be especially useful in the case of interactive
computing which potentially prolongs indefinitely: programs may be upgraded
over time, and so can the hardware. For instance, the user could add more
internal memory, upgrade the disk (while maintaining the original data), or
exchange the processor for a newer one. One could couple it to several other
computers, or connect it to a network like the Internet. Can changes like this
be accommodated within the Turing machine paradigm? What happens, from a
computational viewpoint?

This brings us back to a question posed in the beginning: can the Internet
be simulated by a Turing machine? This is a difficult question, since it asks for
comparing a piece of high-level computing and communication technology that
exists in the real world with a highly simplified model of computation that exists
in the abstract world. Therefore we will answer the question in two steps. In the
first step, we propose an abstract model capturing the important features of the
Internet (and as we will see later, those of many other computational gadgets
in the sciences). In the second step, we compare this model with the classical
Turing machine.

3.1 Modeling the Internet

What could an appropriate abstract model of the Internet be that has the same
abstract simplicity as a Turing machine? The Internet has one important feature
that we want to capture: its structure evolves over time. New sites are added
to or deleted from the network all the time, possibly even connecting to it by
means of wireless technologies. A ‘site’ can be anything: a workstation connected
to the net via a cable, a notebook in an airplane, or a mobile phone. In order
to capture all this variety in a simple model one must choose a fairly abstract
viewpoint.

Consider the evolution of the Internet over time from its very beginning till
now. Concentrate on the moments when it underwent some ‘hardware changes’ as
mentioned above: a computer joined or left the network, or a computer on the net
was upgraded. (We ignore cabling issues.) Between these moments of change, the
structure of the Internet can be seen as stable. In these periods, one can view the
entire Internet as a huge finite automaton, with finitely many input and output
ports corresponding to all data entry and exit points (like keyboards, cameras,
monitors, terminals, printers, and so on). In this automaton, the contents of
the Internet is modeled by the (huge number of) states. Transitions between
states correspond to operations taking place over the Internet, like changes in
its contents by new inputs.

The automaton works in a ‘parallel’ interactive mode, receiving inputs through
all its inputs ports and producing outputs over all its output ports. Of course,
this abstraction neglects many other issues, like variable message transfer times.
Allowing this simplification we go even farther: we merge all input streams into
a single input stream while remembering the identity of the individual elements

584 J. Wiedermann and J. van Leeuwen

(i.e., we can always say which element belongs to which individual stream) and
do the same with the outputs. What we get is an equivalent finite automaton
with a single input and a single output port which, in principle, computes the
same transformation of input to output as the Internet did in a period in which
it had a stable structure. Note that in the same way we can model any single
computer over its lifetime with consecutive upgrades. In-between two consecutive
periods, the structure of the net, and hence of the modeling finite automaton, is
said to evolve.

3.2 Evolving Automata

In order to model the evolution of a computational system like the Internet over
time, we consider the (ordered) sequence of finite automata corresponding to the
successive stable periods. The notion of sequence has been used in computational
complexity theory before in different contexts e.g. to capture the computational
power of non-uniform families of circuits (cf. [1]). In a sequence of automata, the
i-th automaton corresponds to the Internet contents and computations during
the i-th stable period of the Internet. In the course of this time, only the i-th
automaton receives input and produces output.

We have arrived at the following computational model called the evolving
automaton, introduced in [16], [19]. (In [18] the model is called a ‘lineage’ of
automata but we give a simplified formulation for expository reasons.)

Definition 1. For i = 1, 2, . . ., let Ai be a finite automaton with a single input
and a single output port, let its alphabet be Σi, let Si be the set of states of Ai,
and let ∅ �= Qi ⊆ Si, be a set of ‘preserving’ states in Ai. Let TA = t1, t2, . . .,
with ti ∈ N, t1 = 1 and ti < ti+1 be the sequence of switching times. The infinite
sequence of finite automata A = A1, A2, . . . is called an evolving automaton with
schedule TA, or just an evolving automaton if TA is understood, if Qi � Qi+1,
for i = 1, 2, . . . and the switching in processing from one automaton to the next
takes place at the times given by TA.

In the model, the condition Qi � Qi+1 captures the persistence of the relevant
data over time (cf. [6]). In the language of finite automata the condition en-
sures that some information available to Ai and represented in the states in Qi,
is available also to Ai+1 after the ‘change moment’. We require here that the
transferred information can only grow, but this can easily be avoided by slightly
modifying the definition, see [18]. The schedule TA of an evolving automaton A
determines the ‘switching times’ ti ∈ TA when the input stream to Ai must be
redirected to Ai+1, in a state in Qi.

An evolving automaton A clearly is an infinite object, given by an explicit
enumeration of its elements. However, at each time the computation is performed
by only one element of A, which is a finite object. In general, there need not
exist an algorithm for computing Ai given the previous elements in the sequence,
the input and the schedule. A similar remark holds for the switching schedule;
in general, its elements are non-computable from knowing A and the input se-
quence. Evolving automata are non-uniform systems just like families of circuits:

How We Think of Computing Today 585

their development over time cannot be described by an algorithm. The Internet
is a case in point: the decision to upgrade a computer or connect it to the Inter-
net, depends entirely on the person owning the computer and has nothing to do
with the computability.

3.3 Complexity of Evolving Automata

Given an evolving automaton A = A1, A2, . . ., it is natural to consider the num-
ber of states of the individual automata Ai as a measure for the complexity
of A. Define the size complexity of an evolving automaton A as the function g
such that for every i, g(i) is the number of states of Ai. Given this complex-
ity measure, one can now try to categorize the translations realized by evolving
automata A with any possible time schedule TA.

Definition 2. A translation φ of infinite streams to infinite streams is said to
be of complexity g if there is an evolving automaton of complexity g that realizes
φ. For any function g : N → N, let SIZE(g) be the class of all translations φ
that can be realized by an evolving automaton of complexity g.

By the non-uniformity of the model, the classes SIZE(g) will in general contain
an abundance of non-computable translations, even though all of them will be
‘non-uniformly realizable’ by evolving automata within ‘growth bound’ g. A
precise characterization of the translations that are non-uniformly realizable by
evolving automata was given in [18,19]. The complexity measure is a realistic
one, as indicated by the following result from [18,19].

Theorem 1. Let g, h : N → N be positive non-decreasing functions such that
g(i) ≤ h(i) for all i and g(i) < h(i) for at least one i. Then SIZE(g) is properly
contained in SIZE(h).

In fact, in [18,19] it is shown that SIZE(g) and SIZE(h) differ whenever g and
h do. Thus evolving automata have a fitting complexity theory, directly derived
from the nature of the model.

3.4 Modeling the Internet 2

Finally, if one would want to build an evolving automaton simulating the existing
Internet, then we could construct such an automaton only a posteriori, after
watching the Internet’s evolution and taking snapshots of it at the times of its
changes, plus a recording of all input streams. The snapshots would then be used
for constructing the sequence of automata which, on the recorded input streams,
would produce the same translation as the Internet did. Of course, we are not
seriously proposing to do it, it is only a Gedankenexperiment, serving as proof
of principle.

Conversely, can some network simulate an evolving automaton A = A1, A2, . . .
with switching schedule TA = t1, t2, . . .? Of course it can. To show it, we begin
with a computer simulating A1. At time t1 we replace it by (or upgrade it to) a
computer simulating A2 and continue processing the inputs till time t2, etc.

586 J. Wiedermann and J. van Leeuwen

4 Two New Models of Computation

Evolving automata and Turing machines are both defined using the same formal
language. This allows us to compare the computational power of both models.

Proposition 1. Every classical Turing machine, or even an ITM, T can be
simulated by an evolving automaton.

Proof. (Sketch) Observe the computation of T on an input stream σ and note the
times ti when any of the Turing machine’s heads moves past the ‘next’ rightmost
symbol on its tape. These times define the switching schedule. Between times
ti and ti+1, the computation of T can be modeled by a finite automaton Ai.
This leads to a sequence of automata A and a schedule TA computing the same
translation as T . �

The proposition establishes that computationally, evolving automata are at least
as powerful as (interactive) Turing machines. Observe that, in order to simulate
T , the construction of A and that of the switching schedule depended, in a com-
putable way, solely on T and on the input σ. Thus, A and TA were computable
from knowing T and σ. Note that in general, the definition of an evolving au-
tomaton does not require the latter to be the case. Thus, there seems to be some
‘room’ in the computational performance of evolving automata. Could they even
simulate devices that are computationally more powerful than those modeled by
ITMs?

As we shall see below, this is indeed the case: evolving automata are provably
more powerful than Turing machines. Does it mean that the Turing machine is
out of the game when looking for a new paradigm that captures the ideas of
contemporary computing? Not entirely.

4.1 Computing with Advice

Rather than attempting a reverse simulation of evolving automata, let us try to
simulate a yet more powerful model of a Turing machine by evolving automata:
the so-called interactive Turing machine with advice (ITM/A). The model ex-
tends the well-known and well-studied model of (ordinary) Turing machines with
advice in computational complexity theory (cf. [8]).

Definition 3. An interactive Turing machine with advice (ITM/A) is an in-
teractive Turing machine as described before, enhanced by an advice function
f : N → Σ∗. Advice allows the insertion of external information f(t) into the
course of a computation at suitable times.

A standard Turing machine with advice, with input of size n, is allowed to ‘ask’
for the value of its advice function only for that particular value of n. Similarly,
an ITM/A can call its advice at time t only for values t1 ≤ t. To realize such

How We Think of Computing Today 587

a call an ITM/A is equipped with a separate advice tape and among its states
it has a distinguished advice state. By writing t1 on the advice tape and by
entering the advice state at time t ≥ t1 the value of f(t1) will appear on the
advice tape (in a single step). By this action the original contents of the advice
tape is completely rewritten. Note that the value of f(t1) does not depend on
the input read before or after time t: the advice called at time t with argument
t1 ≤ t is the same for all input streams. This makes advice different from oracles
also considered in the computability theory: oracle values can depend on the
current input (cf. [13]).

The mechanism of advise functions is very powerful and can provide an
ITM/A with any non-computable ‘assistance’. For theoretical and practical rea-
sons it is useful to restrict the size of advice growth in ITM/As to polynomial
functions. With advice functions that grow exponentially one could encode ar-
bitrary oracles in advice.

Proposition 2. Evolving automata can simulate interactive Turing machines
with advice and vice versa.

Proof. (Sketch) First we sketch how an evolving automaton, A, can simulate
an ITM/A O. Follow the given simulation of an ITM without advice, but now
also consider the actions of O with its advice: include the times of calling O’s
advice in the schedule of switching times as well. At each switching moment,
the respective automaton will also encode the corresponding advice in its states.
Note that now the members of A cannot be computed solely from knowing σ
and O as before. This time, we also have to know the advice at each calling
time. Note that the automaton sizes in A grow proportionally with the space
complexity and the advice size of the O in the simulated time segment.

The reverse simulation by means of an ITM/A is easy. An ITM/A O is sup-
plied with the description of A’s members and the times of TA ‘on demand’, via
its advice tape. The computation of O on input σ starts by calling the advice.
O gets the description of A1 followed by the value of t1. All O has to do is to
simulate A1 on the next t1 input symbols. Then O calls its advice again, ob-
taining description of A2 and the value of t2, and O simulates A2 for the next
t2−t1 steps. Then the process of calling advice repeats again, etc. Now the space
complexity of O grows as fast as the automata size in A. �

As a corollary we obtain that the Internet, modeled by an evolving automaton,
can be simulated by an interactive Turing machine with advice. By this, we have
finished the second step of our plan: we have identified a model which is an
extension of Turing machines and whose computational power matches exactly
that of a highly simplified model of the (unrestricted) Internet.

4.2 Complexity of ITM/As

As for evolving automata we consider the question whether ITM/As admit an
‘own’ complexity theory.

588 J. Wiedermann and J. van Leeuwen

Proposition 3. ITM/As are more powerful than ITMs (without advice).

Proof. (Sketch) We begin by exhibiting a translation κ that can be realized by
an ITM/A, but not by any ITM without an advice. The computation will ask for
solving the halting problem (known to be undecidable) for all classical Turing
machines.

As input stream, we consider a computable enumeration of all Turing ma-
chines. Given this enumeration, κ should output with each valid machine de-
scription a 1 if and only if this machine accepts its own description, and 0
otherwise. We construct an ITM/A I that does this. In-between producing 0s
or 1s, I will output only empty symbols.

I enumerates all TMs in the same order as they occur in the input stream.
Then I can recognize whether a segment of the input stream is indeed a valid
encoding of a TM. On segments that are not encodings of a TM, I produces 0.
On a segment w that is an encoding of length n of some TM, I calls its advice
with value n (note that the advice is called for a value which does not depend
on the particular input read thus far). The advice gives the encoding 〈M〉 of
a TM whose running time is the longest from among the running time of all
TMs of size n that terminate on their own description. Running this machine on
input 〈M〉 in parallel with the simulation of the w, I has an upper bound on the
running time on w within which the machine must halt on its own description
when it does. In this way I can correctly answer the halting problem for w in
finite time, and proceed with the next segment of the input.

Now we sketch that no ITM without advice can solve the halting problem.
Suppose there was an ITM H computing κ. Obviously, due to the properties
of interactive machines, H should produce the answer to any particular halting
problem in finite time. Thus, if we were interested in solving only a particular
halting problem it would be enough to run a classical TM simulating H until it
produces, in finite time, the solution of our decision problem. This contradicts
the undecidability of the halting problem by classical TMs. �

Given an ITM/A with advice function f , it is natural to consider the size of the
advice f(t) for each individual value of t as a measure for the ‘complexity’ of
the ITM/A (in addition to the usual measures of time and space for the Turing
machine part). Define the advice complexity of an ITM/A with advice function
f as the function α : N → N such that for every t, α(t) = |f(t)| (the length
of the string f(t)). Given this measure one can try to distinguish between the
computational power of different ITM/As. For example, Verbaan [18] proved the
following interesting result, extending a similar result known for ordinary Turing
machines with advice.

Theorem 2. Consider ITM/As over input and advice alphabets with a fixed
size bound b. Let α and β be integer-valued functions such that α = o(β) and
β(t) ≤ bt

log b for all t. Then there is a translation φ of infinite streams to infinite
streams that can be realized by an ITM/A of advice complexity β, but not by any
ITM/A of advice complexity α′, for any function α′ with α′(t) ≤ α(t) for all but
finitely many t.

How We Think of Computing Today 589

In fact, as soon as α is strictly ‘below’ β for all but finitely many values of
t, ITM/As of advice complexity β are more powerful than ITM/As of advice
complexity α [18].

The computational equivalence between evolving automata and ITM/As also
opens the question whether their complexity theories can be linked. An example
of a result in this direction is the following.

Theorem 3. Let φ be a translation of infinite streams to infinite streams. Let φ
be realizable by an evolving automaton of size complexity g. Then φ can be realized
by an ITM/A of advice complexity O(g log g) and space complexity O(log g).

It follows e.g. that evolving automata of polynomially bounded size complexity
can be simulated by an ITM/A of polynomially bounded advice complexity and
logarithmic space. The converse result can be shown as well [18].

5 Extending the Turing Machine Paradigm

[· · ·] a comprehensive theory of computation must reflect in a stylized
way aspects of the underlying physical world.
T. Toffoli ([11], 1982).

In our search for a new computational model, we have presented three important
insights:

(i) we have devised a model of evolving automata capturing interactive and
non-uniformly evolving computing,

(ii) we have shown the computational equivalence of evolving automata and
interactive Turing machines with advice and, last but not least,

(iii) we have shown that these two models are computationally more power-
ful than interactive Turing machines (without advice) which only capture
interaction.

This leads to the new computational paradigm that we have in mind:

Extended Turing Machine paradigm: A computational process is
any process whose evolution over time can be captured by evolving au-
tomata or, equivalently, by interactive Turing machines with advice.

The new paradigm represents a new understanding of computing, motivated by
developments like the Internet and even by the computational views of living
systems. It innovates the classical view of computing in three ways: a shift from
finite computations to potentially infinite interactive ones, a shift from rigid
computing systems towards systems whose architecture and functionality evolve
over time and, last but not least, an understanding that in general the latter
process of evolution happens in an unpredictable, non-uniform, non-computable
way.

In our view, both models mentioned in the extended paradigm, the ITM/A
and evolving automata, have their use. Together they illustrate the dual view of

590 J. Wiedermann and J. van Leeuwen

a non-computable evolution. The metaphor of an ITM/A corresponds better to
our intuition and experience in which computers are perceived as well engineered
devices with a fixed architecture driven solely by input data, now with their
‘evolution’ driven by data as well (namely by those from the advice). In this
way, an TM/A models non-uniform software evolution. On the other hand, the
metaphor of an evolving automaton models a hardware evolution. This makes
this model more suitable for modeling systems where a non-uniform hardware
evolution is readily visible (as was the case of the Internet). Of course, both
models are only different sides of the same coin.

5.1 Non-computability Issues in the Extended Paradigm

The new paradigm indirectly asserts that the ‘new computing’ is computationally
more powerful than classical computing, since the models of computing serving
in the new paradigm are provably computationally more powerful than those in
the old paradigm. Does it mean that the new paradigm encompasses some form
of super-Turing computing capability, and if so, can the extra power be used for
‘solving’ undecidable problems?

Of course the answer to both questions is negative, as seen from the proof
of Proposition 3. In order to solve the halting problem, the constructed ITM/A
had to be provided with non-computable information. In general, an ITM/A
can solve classically undecidable problems if and only if its advice contains the
respective non-computable information. In the proof we were not interested in
how this information could be obtained, we just made use of the fact that such
information in principle exists. Thus, there is nothing miraculous in our result:
if a device has non-computable information at its disposal, it can solve non-
computable tasks. This has been known since Turing’s times (cf. [13], [2]).

In ‘real’ computational environments (such as in the Internet), the non-comput-
ability manifests itself, e.g., as the non-predictability of their evolution or in the
unpredictable variance in message transfer times among the systems part. We do
not know of any computational exploitation of these phenomena (except, perhaps,
as a source of random numbers). In fact, in most of our computing activities we
strive for being shielded from these phenomena. Hence, the hyper-Turing power
implied by the extended paradigm is needed for the purposes of theoretical mod-
eling, but, unfortunately, cannot be purposefully harnessed for any goal-oriented
computational purposes.

5.2 The Scope of the Extended Paradigm

What remains is to see whether the other systems, man-made or natural, men-
tioned in the introduction as examples of systems ‘that process information and
compute’ are covered by the extended paradigm. No doubt that, once we agree
that the models in the paradigm capture the Internet, then they also capture all
variations of this theme: wireless ad hoc networks, sensor nets, etcetera. Gen-
eralizing, one can say that to the extent to which finite automata mirror the
data-processing capability of some entity (such as that of a biological cell or of

How We Think of Computing Today 591

a biological neuron), the extended paradigm also mirrors the data-processing
capabilities and computations of ensembles (such as organisms or brains) and
communities of such entities (such as swarms of ants or bees, or also communi-
ties of humans). Cf. [22] for a more in-depth, complexity-oriented study of such
an approach.

The case of physical systems in general, and especially of the Universe itself,
is interesting. Apparently, there are ‘no external inputs’ to the Universe. A cur-
rent state of the universe completely determines its next state (albeit not in the
deterministic way, as in the case of deterministic finite automata). Or, to quote
Toffoli [11]: In a sense, nature has been continually computing the ‘next state’ of
the universe for billions of years; all we have to do - and actually, all we can do
- is ‘hitch a ride’ on this huge ongoing computation. What we ‘observe’ is the
potentially infinite sequence of instances of the Universe. Could this be modeled
by a kind of a gigantic, ‘natural’ evolving automaton (perhaps a quantum au-
tomaton?) whose evolution is governed by the laws of the Nature? According to
Lloyd [3], the Universe computes its own evolution. This seems to be close to
the spirit of our paradigm.

6 Conclusions

The contemporary perception of computing sees it as any act of information pro-
cessing and transfer, occurring in both the local and global behavior of systems.
In this view, computation encompasses communication, interaction, reaction,
receiving, sending, storing, retrieving and transformation of information. The
Extended Turing Machine paradigm captures it in an abstract manner.

The extended paradigm keeps the central position of Turing machines in our
apprehension of computing, continuing in this way the tribute to A.M. Turing.
In fact, the new paradigm also makes use of the language of classical Turing
machines, upgraded this time, by the notions of interaction and advice. The
new paradigm also encompasses non-uniform computing, which seems to be far
more ubiquitous and less artificial than believed before. The complementary
view of interactive Turing machines as that of evolving automata stresses the
dual sides of both software and hardware evolution. In addition to the known
cases of computing artifacts, the extended paradigm also covers the information
processing occurring in the Nature. For informal use, there is no need to formally
revise the good old Turing machine paradigm. What is needed is to be more
liberal in understanding different variants of Turing machines and their scenarios.
This was also concluded in a debate on Lance Fortnow’s weblog: [5].

Call me a rationalist then as I continue to hold the belief that no matter
how complicated the computational model, we can still use the simple
Turing machine to capture its power.
L. Fortnow ([5], 2006).

There is some advantage in having the paradigms of science formulated in
not very precise terms. Namely, in such a case, their rejection requires a real

592 J. Wiedermann and J. van Leeuwen

revolution to happen in the field. Otherwise, let our paradigms evolve along
with the evolution of the notions they deal with. But it is good to know that
when it comes to the details, we are able to make our paradigms more precise.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. 2nd edn. Springer,
Berlin (1995)

2. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: Life
and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2004)

3. Edge, The Computational Universe: Seth Lloyd [10.24.02] (October 24, 2002),
http://www.edge.org/3rd culture/lloyd2/lloyd2 index.html

4. Etesi, G., Németi, I.: Turing computability and Malament-Hogarth space-
times. International Journal of Theoretical Physics 41(2), 342–370 (2002),
http://arxiv.org/abs/gr-qc/0104023

5. Fortnow, L.: Principles of problem solving: A TCS Response, weblog Computa-
tional Complexity, Friday (July 14, 2006), http://weblog.fortnow.com/2006/07/
principles-of-problem-solving-tcs.html

6. Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.: Turing machines, tran-
sition systems, and interaction. Information and Computation 194(2), 101–128
(2004)

7. Goldin, D.Q., Smolka, S., Wegner, P. (eds.): Interactive Computing: The New
Paradigm. Springer, Berlin (2006)

8. Karp, R.M., Lipton, R.: Turing machines that take advice, L’Enseignement
Mathématique, IIe Série, Tome XXVIII, pp. 191–209 (1982)

9. Lloyd, S.: The Computational Universe. Originally published on Edge, (October
24, 2002), http://www.edge.org/3rd culture/lloyd2/lloyd2 p2.html

10. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Formal Models and Semantics, vol.B, ch. 4, pp.
133–192. Elsevier Science Publishers, Amsterdam (1990)

11. Toffoli, T.: Physics and computation. Int. Journal of Theor. Physics 21, 165–175
(1982)

12. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. Series 2 42, 230–265 (1936)

13. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. Series
2 45, 161–228 (1939)

14. van Leeuwen, J., Wiedermann, J.: The Turing machine paradigm in contemporary
computing. In: Enquist, B., Schmidt, W. (eds.) Mathematics Unlimited - 2001 and
Beyond, pp. 1139–1155. Springer, Berlin (2001)

15. van Leeuwen, J., Wiedermann, J.: A computational model of interaction in embed-
ded systems, Technical Report UU-CS-2001-02, Dept.of Information and Comput-
ing Sciences, Utrecht University (2001)

16. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: Evolving interactive
systems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001: Theory and Practice
of Informatics. LNCS, vol. 2234, pp. 90–109. Springer, Heidelberg (2001)

17. van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. In:
Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computing: The New
Paradigm, ch. 6, pp. 119–142. Springer, Berlin (2006)

http://www.edge.org/3rd_culture/lloyd2/lloyd2_index.html
http://arxiv.org/abs/gr-qc/0104023
http://weblog.fortnow.com/2006/07/principles-of-problem-solving-tcs.html
http://weblog.fortnow.com/2006/07/principles-of-problem-solving-tcs.html
http://www.edge.org/3rd_culture/lloyd2/lloyd2_p2.html

How We Think of Computing Today 593

18. Verbaan, P.R.A.: The Computational Complexity of Evolving Systems,
Ph.D.Thesis, Dept.of Information and Computing Sciences, Utrecht University
(2006)

19. Verbaan, P.R.A., van Leeuwen, J., Wiedermann, J.: Complexity of evolving inter-
active systems. In: Karhumäki, J., et al. (eds.) Theory Is Forever. LNCS, vol. 3113,
pp. 268–281. Springer, Berlin (2004)

20. Wegner, P.: Why interaction is more powerful than algorithms. C. ACM 40, 315–
351 (1997)

21. Wiedermann, J., van Leeuwen, J.: Relativistic computers and non-uniform com-
plexity theory. In: Calude, C., et al. (eds.) UMC 2002. LNCS, vol. 2509, pp. 287–
299. Springer, Heidelberg (2002)

22. Wiedermann, J., van Leeuwen, J.: The emergent computational potential of evolv-
ing artificial living systems. AI Communications 15(4), 205–215 (2002)

23. Winograd, T.: From computing machinery to interaction design. In: Denning,
P., Metcalfe, R. (eds.) Beyond Calculation: The Next Fifty Years of Comput-
ing, pp. 149–162. Springer, Berlin (1997), http://hci.stanford.edu/~winograd/
acm97.html

http://hci.stanford.edu/~winograd/acm97.html
http://hci.stanford.edu/~winograd/acm97.html

	How We Think of Computing Today
	Introduction
	From Isolated to Interactive Computation
	Classical Computing
	`Always On' Computing
	Interactive Computing

	From Interactive to Evolving Computation
	Modeling the Internet
	Evolving Automata
	Complexity of Evolving Automata
	Modeling the Internet 2

	Two New Models of Computation
	Computing with Advice
	Complexity of ITM/As

	Extending the Turing Machine Paradigm
	Non-computability Issues in the Extended Paradigm
	The Scope of the Extended Paradigm

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

