Unification types in modal logics

Philippe Balbiani

Logic, Interaction, Language and Computation Toulouse Institute of Computer Science Research CNRS — Toulouse University, France

Institut de Recherche en Informatique de Toulouse CNRS - INP - UT3 - UT1 - UT2J

Outline

Contents

- \blacktriangleright Definitions
- \blacktriangleright Boolean unification
- \triangleright Unification types in modal logics and description logics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Recent advances

Unification in an equational theory E

Equational unification

rianglephent of making given terms equal modulo E by replacing their variables by terms

Unification in a propositional logic **L**

Logical unification

 \triangleright problems of making given formulas equivalent in L by replacing their variables by formulas

References

- \triangleright Baader, F., Snyder, W. : Unification theory. In : Handbook of Automated Reasoning, Elsevier (2001) 439–526.
- \triangleright Siekmann, J. : Unification theory. Journal of Symbolic Computation 7 (1989) 207–274.

Let us consider a propositional logic **L** like

- \triangleright Classical Propositional Logic CPL, Intuitionistic Propositional Logic IPL , \ldots
- \triangleright Propositional modal logics S_4 , S_5 , ...
- \triangleright Description logics FL_0 , EL , ...

Unification problems in L

Given a pair (φ, ψ) of formulas

is there a substitution σ such that $\sigma(\varphi) \leftrightarrow \sigma(\psi)$ is in L?

Given finitely many pairs $(\varphi_1, \psi_1), \ldots, (\varphi_n, \psi_n)$ of formulas

is there a substitution σ such that $\sigma(\varphi_1) \leftrightarrow \sigma(\psi_1), \ldots$ $\sigma(\varphi_n) \leftrightarrow \sigma(\psi_n)$ are in L?

KORK ERKER ADE YOUR

Given a formula φ

is there a substitution σ such that $\sigma(\varphi)$ is in **L** ?

Language of L : formulas are constructed by means of

- \blacktriangleright Variables x, y, ...
- \blacktriangleright Parameters p, q, ...
- \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow , \Box , \Diamond , ...

Elementary unification in L

- **In** Given a parameter-free formula $\psi(x_1, \ldots, x_n)$
- Determine whether there exists formulas $\varphi_1, \ldots, \varphi_n$ such that $\psi(\varphi_1,\ldots,\varphi_n)$ is in L

Unification with parameters in L

- **If** Given a formula $\psi(p_1, \ldots, p_m, x_1, \ldots, x_n)$
- \triangleright Determine whether there exists formulas $\varphi_1, \ldots, \varphi_n$ such that $\psi(p_1,\ldots,p_m,\varphi_1,\ldots,\varphi_n)$ is in L 4 D > 4 P + 4 B + 4 B + B + 9 Q O

In Classical Propositional Logic **CPL**, Intuitionistic Propositional Logic **IPL**, ...

- \blacktriangleright Elementary unifiability is equivalent to consistency
- ▶ Why ? Use Uniform Substitution

In propositional modal logic S_4 , S_5 , ...

- \blacktriangleright Elementary unifiability is not equivalent to consistency
- ► Why ? Consider the formula $\Diamond x \land \Diamond \neg x$ and use Uniform Substitution

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Admissibility in L

► The rule of inference $\frac{\varphi_1 \dots \varphi_m}{\psi}$ is admissible in **L** if for all substitutions σ , if $\sigma(\varphi_1), \ldots, \sigma(\varphi_m)$ are in L then $\sigma(\psi)$ is in L

Unifiability by means of admissibility

- If L is consistent then the following are equivalent :
	- ► Formula φ is unifiable in **L**
	- Rule of inference $\frac{\varphi}{\perp}$ is non-admissible in **L**

Admissibility by means of unifiability

If L is finitary or unitary then the following are equivalent :

- Rule of inference $\frac{\varphi_1 \dots \varphi_m}{\psi}$ is admissible in **L**
- Formulas $\sigma(\psi)$ is in L for each maximal L-unifiers σ of $\varphi_1 \wedge \ldots \wedge \varphi_m$

Suppose L is axiomatically presented (axioms $+$ rules of inference)

Derivability of formulas from hypothesis

- A derivation in L of formula ψ from hypothesis $\varphi_1, \ldots, \varphi_n$ is a sequence ψ_1, \ldots, ψ_k of formulas such that $\psi = \psi_k$ and for all $i = 1...k$, at least one of the following conditions holds
	- \blacktriangleright ψ_i is an instance of an axiom of $\boldsymbol{\mathsf{L}}$
	- \triangleright ψ_i can be obtained from $\psi_1, \ldots, \psi_{i-1}$ by means of at least one of the rules of inference of L

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 $\blacktriangleright \psi_i$ is equal to one of the hypothesis $\varphi_1, \ldots, \varphi_n$

 \triangleright We write $\varphi_1, \ldots, \varphi_n \vdash_1 \psi$

Derivability of inference rules

► The rule of inference $\frac{\varphi_1 \dots \varphi_m}{\psi}$ is derivable in L if $\varphi_1, \ldots, \varphi_n \vdash_{\mathsf{L}} \psi$

Suppose L is axiomatically presented (axioms $+$ rules of inference)

Proposition

 \triangleright Every L-derivable rule of inference is admissible

Why ? Use Uniform Substitution

Structural completeness

 \triangleright L is said to be structurally complete if every L-admissible rule of inference is derivable

About Classical Propositional Logic CPL

CPL is structurally complete : every CPL-admissible rule of inference is derivable

- \triangleright Thus, admissibility in CPL is decidable
- In fact, in CPL, the admissibility problem is equivalent to the derivability problem

About Intuitionistic Propositional Logic IPL

IPL is not structurally complete : some IPL-admissible rules of inference are not derivable

►
$$
\frac{\neg x \rightarrow y \lor z}{(\neg x \rightarrow y) \lor (\neg x \rightarrow z)} - \text{Harrop rule (1960)}
$$

\n▶ $\frac{(\neg x \rightarrow x) \rightarrow (x \lor \neg x)}{\neg \neg x \lor \neg x} - \text{Lemma-Scott rule}$

\n▶ $\frac{(x \rightarrow y) \rightarrow (x \lor \neg y)}{\neg \neg x \lor \neg y} - \text{generalized Lemma-Scott rule}$

\n▶ $\frac{(x \rightarrow y) \rightarrow x \lor z}{((x \rightarrow y) \rightarrow x) \lor ((x \rightarrow y) \rightarrow z)} - \text{Mints rule (1972)}$

About Intuitionistic Propositional Logic IPL

The following rule is admissible in IPL but not derivable

$$
\blacktriangleright \frac{(\neg\neg x \to x) \to (x \lor \neg x)}{\neg\neg x \lor \neg x} \longrightarrow \textbf{Lemman-Scott rule}
$$

About propositional modal logic S4

The following rule is admissible in S4 but not derivable > □□□△□×→□×)→□××□→□×)〕 — modal Lemmon-Scott rule

About intermediate logics

If L is an intermediate logic — IPL \subseteq L \subseteq CPL — then the following are equivalent for each rule of inference $\mathcal R$

- \triangleright R is admissible in L
- \triangleright The modal translation of R is admissible in the greatest modal companion of L

Reference

• Rybakov, V. : Admissible rules for pretable modal logics. Algebra and Logic 20 (1981) 291–307.

Other references Rybakov (1981)

 \triangleright The unification problem and the admissibility problem in extensions of propositional modal logic S4.3 are decidable

Rybakov (1984, 1997)

 \triangleright The unification problem and the admissibility problem in propositional modal logics $K4$, $S4$, ... are decidable

Chagrov (1992)

 \triangleright There exists a decidable propositional modal logic with an undecidable admissibility problem

Wolter and Zakharyaschev (2008)

 \triangleright The unification problem and the admissibility problem for any propositional modal logic between K_{U} and $K4_{U}$ are undecidable

Outline

Contents

- \blacktriangleright Definitions
- \blacktriangleright Boolean unification
- \triangleright Unification types in modal logics and description logics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Recent advances

Definitions about unification

Propositional language

Formulas are constructed by means of

- \triangleright Set VAR of propositional variables x, y, ...
- \triangleright Set PAR of propositional parameters p, q, ...
- \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow , \Box , \Diamond , ...

For all finite subsets X of **VAR**

► Let \mathcal{L}_X be the set of all formulas φ such that $\text{var}(\varphi) \subseteq X$

Definitions about unification

Substitutions are functions of the form

 \triangleright $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$

where X, Y are finite subsets of **VAR**

Composition of substitutions Given $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ and $\tau : \mathcal{L}_Y \longrightarrow \mathcal{L}_Z$, let $\triangleright \tau \sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Z$ with $(\tau \sigma)(\varphi) = \tau (\sigma(\varphi))$

KORK ERKER ADE YOUR

From now on Let **L** be a propositional logic

Definitions about unification

Equivalence between substitutions

Let $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ and $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$

- $\triangleright \sigma \simeq_1 \tau$ if for all variables x in X, $\sigma(x) \leftrightarrow \tau(x) \in L$
- \blacktriangleright " σ and τ are L-equivalent"

Preorder between substitutions

Let $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ and $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Z$

 $\triangleright \sigma \preceq_L \tau$ if there exists a substitution $\mu : L_Y \longrightarrow L_Z$ such that $\mu\sigma \simeq_L \tau$

KORK ERKER ADE YOUR

 \triangleright " σ is less specific, more general than τ in L"

Definitions about unification

Unifiers and bases

Unifiers

 \triangleright A substitution $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ is a unifier of a formula φ in **L** if $X = \text{var}(\varphi)$ and $\sigma(\varphi) \in L$

Complete sets of unifiers

A set Σ of unifiers of a formula φ is complete if for all unifiers τ of φ , there exists a unifier σ of φ in Σ such that $\sigma \preceq_L \tau$

Bases

 \triangleright A complete set Σ of unifiers of a formula is a basis if for all σ, τ in Σ , if $\sigma \preceq_1 \tau$ then $\sigma = \tau$

Definitions about unification

Unifiers and bases

Important property

 \triangleright All bases of unifiers of a formula have the same cardinality

Important questions

- \triangleright Given a formula, has it a unifier ?
- If so, has it a basis ?
- If so, how large is this basis ? Is this basis effectively computable ?

Definitions about unification

Unification problems

Elementary unification in L

input : a parameter-free formula φ

output : determine whether there exists a unifier of φ in **L**

Unification with parameters in L

input : a formula φ

output : determine whether there exists a unifier of φ in L

KORKA SERKER ORA

Definitions about unification

Types of formulas

Nullary formulas

 \triangleright A L-unifiable formula φ is nullary (or of type 0) if it has no basis

Infinitary formulas

A L-unifiable formula φ is infinitary (or of type ∞) if it has an infinite basis

Finitary formulas

A L-unifiable formula φ is finitary (or of type ω) if it has a finite basis of cardinality ≥ 2

Unitary formulas

A L-unifiable formula φ is unitary (or of type 1) if it has a finite basis of cardinality $= 1$

Definitions about unification

Types of propositional logics

The unification types being ordered by $1\leq \omega \leq \infty \leq 0$, the unification type of L is the greatest type among the types of its unifiable formulas, i.e.

- \triangleright L is nullary (or of type 0) if there exists a nullary L-unifiable formula
- ► L is infinitary (or of type ∞) if every L-unifiable formula is either infinitary, or finitary, or unitary and there exists an infinitary L-unifiable formula
- \triangleright L is finitary (or of type ω) if every L-unifiable formula is either finitary, or unitary and there exists a finitary L-unifiable formula
- \triangleright L is unitary (or of type 1) if every L-unifiable formula is unitary

Definitions about modal logics

Propositional modal language

Formulas (φ, ψ, \ldots) are constructed by means of

- \triangleright Set VAR of propositional variables x, y, ...
- \triangleright Set PAR of propositional parameters p, q, ...
- \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow , \Box , \Diamond , ...

KORKAR KERKER EL VOLO

Formal definition of the set $\mathcal L$ of all formulas

 $\triangleright \varphi ::= x | p | \bot | \neg \varphi | (\varphi \vee \psi) | \Box \varphi$

Abbreviations

- \triangleright \top , \wedge , \rightarrow , \leftrightarrow are defined as usual
- $\triangleright \Diamond$ is defined by $\Diamond \varphi$::= ¬ $\Box \neg \varphi$
- $\blacksquare \Box^{\leq k} \varphi ::= \varphi \land \Box \varphi \land \ldots \land \Box^k \varphi$

Definitions about modal logics

Propositional modal logic

Set L of formulas closed under uniform substitution and such that

- 1. L contains all tautologies
- 2. L contains the distribution axiom : $\square(x \rightarrow y) \rightarrow (\square x \rightarrow \square y)$

- 3. L is closed under modus ponens : $\frac{x \times y}{y}$
- 4. **L** is closed under generalization : $\frac{x}{\Box x}$

Definitions about modal logics

Examples

 \blacktriangleright Least modal logic

\triangleright K

E Least modal logic containing modal logic **L** and formula φ \triangleright L + φ

- \blacktriangleright Greatest modal logic
	- \triangleright \mathcal{L} the only inconsistent modal logic
- \triangleright Greatest consistent modal logics
	- \triangleright Ver = $K + \square$
	- \triangleright Triv = $K + \Box x \leftrightarrow x$

Definitions about modal logics

Other examples

KORKA SERKER ORA

Definitions about modal logics

Important results : Let L be a consistent modal logic Ladner (1977)

► If L C S4 then L is PSPACE-hard

Nagle (1981)

 \blacktriangleright If $K5 \subseteq L$ then L is in coNP

Spaan (1993)

 \blacktriangleright If S4.3 \subseteq L then L is in coNP

Folklore

► For all formulas $\varphi_1, \ldots, \varphi_n, \psi$, the following conditions are equivalent

KORKAR KERKER EL VOLO

- $\blacktriangleright \varphi_1, \ldots, \varphi_n \vdash_\mathsf{L} \psi$
- In there exists $k_1, \ldots, k_n \in \mathbb{N}$ such that $\square^{\leq k_1}\varphi_1\wedge\ldots\wedge\square^{\leq k_n}\varphi_n\to\psi$ is in L

Definitions about modal logics

Relational semantics

Frames are structures (W, R) where

- \triangleright W is a nonempty set of *possible worlds s, t, ...*
- \triangleright R is a binary relation of *accessibility* on W

Relational models are structures (W, R, V) where

- \blacktriangleright (W, R) is a frame
- $\triangleright \; V$: VAR ∪ PAR $\longrightarrow \wp(W)$ is a valuation

Definitions about modal logics

Relational semantics Truth conditions in a model (W, R, V) : for all $s \in W$

$$
s \models x \Leftrightarrow s \in V(x)
$$

\n
$$
s \models p \Leftrightarrow s \in V(p)
$$

\n
$$
s \models \bot \Leftrightarrow \text{never}
$$

\n
$$
s \models \neg \varphi \Leftrightarrow s \not\models \varphi
$$

\n
$$
s \models \varphi \lor \psi \Leftrightarrow s \models \varphi \text{ or } s \models \psi
$$

\n
$$
s \models \Box \varphi \Leftrightarrow \text{for all } t \in W, \text{ if } sRt \text{ then } t \models \varphi
$$

As a result

 σ = $\Diamond \varphi \Leftrightarrow$ there exists $t \in W$ such that sRt and $t \models \varphi$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Definitions about modal logics

Relational semantics Global truth in a model : φ is globally true in model (W, R, V) if \triangleright for all $s \in W$, $s \models \varphi$ Denotation : $(W, R, V) \models \varphi$

Validity in a frame : φ is valid in frame (W, R) if

 $\triangleright \varphi$ is globally true in all relational models based on (W, R) Denotation : $(W, R) \models \varphi$

Validity in a class of frames : φ is valid in a class ${\cal C}$ of frames if $\triangleright \varphi$ is valid in all C-frames Denotation : $\mathcal{C} \models \varphi$

Definitions about modal logics

Correspondence

For all frames (W, R) , the following conditions correspond

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

Definitions about modal logics

Completeness

The following sets of formulas are equal

Outline

Contents

 \blacktriangleright Definitions

\blacktriangleright Boolean unification

 \triangleright Unification types in modal logics and description logics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Recent advances

Boolean unification

Boolean language

Formulas (φ, ψ, \ldots) are constructed by means of

- \triangleright Set VAR of propositional variables x, y, ...
- \triangleright Set PAR of propositional parameters p, q, ...

KORK ERKER ADE YOUR

 \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow

Formal definition of the set $\mathcal L$ of all formulas

 $\triangleright \varphi ::= x | p | \bot | \neg \varphi | (\varphi \vee \psi)$

Abbreviations

 \triangleright T, \wedge , \rightarrow , \leftrightarrow are defined as usual

Boolean unification

Proposition

Boolean unification is unitary

 \triangleright Every CPL-unifiable formula has a basis of unifiers of cardinality $= 1$

Boolean elementary unification is NP-complete

 $\triangleright \varphi(\bar{x})$ is CPL-unifiable $\Longleftrightarrow \varphi(\bar{x})$ is consistent

Boolean unification with parameters is $\Pi^{\textbf{P}}_2$ -complete

 $\blacktriangleright \varphi(\bar{p}, \bar{x})$ is CPL-unifiable $\Longleftrightarrow \forall \bar{p} \exists \bar{x} \varphi(\bar{p}, \bar{x})$ is QBF-valid

References

- \triangleright Martin, U., Nipkow, T. : Boolean unification the story so far. Journal of Symbolic Computation 7 (1989) 275–293.
- \triangleright Baader, F. : On the complexity of Boolean unification. Information Processing Letters 67 (1998) 215–220.

Boolean unification

Projective substitutions

A substitution $\epsilon : \mathcal{L}_X \longrightarrow \mathcal{L}_X$ is **projective for a formula** φ if $var(\varphi) = X$ and $\varphi \vdash_{\mathsf{CPL}} \epsilon(x) \leftrightarrow x$ for each $x \in var(\varphi)$

KORK ERKER ADE YOUR

Projective formulas

 \triangleright A formula is **L-projective** if it has a projective **L**-unifier
Lemma

Projective substitutions are closed under compositions

Proof

Suppose $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_X$ and $\tau : \mathcal{L}_Y \longrightarrow \mathcal{L}_Y$ are such that

- \blacktriangleright var $(\varphi) = X$
- $\triangleright \varphi \vdash_{\mathsf{CPL}} \sigma(x) \leftrightarrow x$ for each $x \in \text{var}(\varphi)$
- \blacktriangleright var $(\varphi) = Y$
- $\triangleright \varphi \vdash_{\mathsf{CPL}} \tau(x) \leftrightarrow x$ for each $x \in \text{var}(\varphi)$

Hence

 $\triangleright \varphi \vdash_{\mathsf{CPL}} \tau (\psi) \leftrightarrow \psi$ for each $\psi \in \mathcal{L}_{\text{var}(\varphi)}$

 $\triangleright \varphi \vdash_{\mathsf{CPL}} \tau(\sigma(x)) \leftrightarrow \sigma(x)$ for each $x \in \text{var}(\varphi)$

- $\triangleright \varphi \vdash_{\mathsf{CPL}} \tau(\sigma(x)) \leftrightarrow x$ for each $x \in \text{var}(\varphi)$
- $\triangleright \varphi \vdash_{\mathsf{CPI}} (\tau \sigma)(x) \leftrightarrow x$ for each $x \in \text{var}(\varphi)$

Lemma

If a substitution is projective for φ then it is more general than any unifier of φ

Proof

Suppose $\epsilon : \mathcal{L}_X \longrightarrow \mathcal{L}_X$ and $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ are such that

$$
\blacktriangleright \ \text{var}(\varphi) = X
$$

$$
\blacktriangleright \varphi \vdash_{\mathsf{CPL}} \epsilon(x) \leftrightarrow x \text{ for each } x \in \text{var}(\varphi)
$$

 \blacktriangleright $\tau(\varphi)$ is in CPL

Hence

- $\triangleright \tau(\varphi) \vdash_{\mathsf{CPL}} \tau(\epsilon(x)) \leftrightarrow \tau(x)$ for each $x \in \text{var}(\varphi)$
- $\triangleright \tau(\epsilon(x)) \leftrightarrow \tau(x)$ is in CPL for each $x \in \text{var}(\varphi)$
- \blacktriangleright $(\tau \epsilon)(x) \leftrightarrow \tau(x)$ is in CPL for each $x \in \text{var}(\varphi)$

KORK ERKER ADE YOUR

 \blacktriangleright $\tau \in \simeq$ rpl τ

 \blacktriangleright $\epsilon \prec_{\text{CPI}} \tau$

Lemma CPL-unifiable formulas are projective

Proof: Consider a CPL-unifier $\sigma : \mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{var(\varphi)}$ of φ

- ► Let ϵ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{var(\varphi)}$ be the substitution such that $\epsilon(x) = (\varphi \wedge x) \vee (\neg \varphi \wedge \sigma(x))$ for each $x \in \text{var}(\varphi)$
- \blacktriangleright Remarks about ϵ
	- $\triangleright \varphi \vdash_{\mathsf{CPI}} \epsilon(x) \leftrightarrow x$ for each $x \in \text{var}(\varphi)$
	- $\triangleright \varphi \to (\epsilon(\psi) \leftrightarrow \psi)$ is in CPL for each $\psi \in \mathcal{L}_{var(\varphi)}$
	- $\triangleright \neg \varphi \rightarrow (\epsilon(\psi) \leftrightarrow \sigma(\psi))$ is in CPL for each $\psi \in \mathcal{L}_{var(\varphi)}$
- \blacktriangleright Hence
	- \triangleright ϵ is a projective substitution for φ
	- $\triangleright \varphi \rightarrow (\epsilon(\varphi) \leftrightarrow \varphi)$ and $\varphi \rightarrow \epsilon(\varphi)$ are in **CPL**
	- $\triangleright \neg \varphi \rightarrow (\epsilon(\varphi) \leftrightarrow \sigma(\varphi))$ and $\neg \varphi \rightarrow \epsilon(\varphi)$ are in CPL

KORKAR KERKER EL VOLO

 \blacktriangleright $\epsilon(\varphi)$ is in CPL

Proposition

Boolean unification is unitary

The \rightarrow -fragment : syntax

Formulas (φ, ψ, \ldots) are constructed by means of

- \triangleright Set VAR of propositional variables x, y, ...
- \triangleright Set PAR of propositional parameters p, q, ...
- \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow

Formal definition of the set $\mathcal{L}_{\rightarrow}$ of all formulas

 $\triangleright \varphi ::= x \mid p \mid (\varphi \rightarrow \psi)$

Abbreviations

- \triangleright T is defined by T ::= $x \to x$
- \triangleright \vee is defined by $(\varphi \vee \psi)$::= $((\varphi \rightarrow \psi) \rightarrow \psi)$

KORK ERKER ADE YOUR

The \rightarrow -fragment : some properties Satisfiability/validity

- ► Every formula in $\mathcal{L}_{\rightarrow}$ is satisfiable
- \triangleright The validity problem for $\mathcal{L}_{\rightarrow}$ -formulas is **coNP**-complete Axiomatization : modus ponens +
	- \blacktriangleright $(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z))$
	- \blacktriangleright $x \to (y \to x)$

$$
\blacktriangleright ((x \to y) \to x) \to x
$$

Algebraic characterization : semi-Boolean algebras (A, \triangleright)

KORK ERKER ADE YOUR

$$
\blacktriangleright (a \triangleright b) \triangleright a = a
$$

$$
\blacktriangleright a \triangleright (b \triangleright c) = (b \triangleright (a \triangleright c))
$$

$$
\blacktriangleright (a \triangleright b) \triangleright b = (b \triangleright a) \triangleright a
$$

The \rightarrow -fragment : unification

For all parameter-free formulas φ in $\mathcal{L}_{\rightarrow}$

- $\triangleright \varphi$ is satisfiable
- $\triangleright \varphi$ is unifiable : a possible unifier of φ being
	- ightharpoontangleright that for all $x \in \text{var}(\varphi)$, $\sigma(x) = \top$
- $\triangleright \varphi$ is projective : a possible projective unifier of φ being
- ightharpoontangleright that for all $x \in \text{var}(\varphi)$, $\epsilon(x) = \varphi \to x$ As a result

 \triangleright elementary unification in the $\mathcal{L}_{\rightarrow}$ -fragment of **CPL** is unitary What is the type of

 \triangleright unification with parameters in the $\mathcal{L}_{\rightarrow}$ -fragment of CPL?

KORKAR KERKER EL VOLO

Lemma

The unifiable formula $x \to p \lor q$ is not unitary when $p \neq q$

Proof

- ► Suppose $\tau : \mathcal{L}_{\{x\}} \longrightarrow \mathcal{L}_Y$ is a mgu of $x \rightarrow p \vee q$
- \blacktriangleright Hence
	- $\blacktriangleright \tau(x) \to p \vee q$ is in CPL
	- ightharp $p \to \tau(x)$ is in CPL, or $q \to \tau(x)$ is in CPL
- \triangleright WLOG, suppose $p \to \tau(x)$ is in CPL
- ► Let σ_q : $\mathcal{L}_{\{x\}}$ \longrightarrow \mathcal{L}_{\emptyset} be such that $\sigma_q(x) = q$
- ► Thus, σ_{q} is a unifier of $x \rightarrow p \vee q$ and
	- \blacktriangleright $\tau \preceq$ _{CPL} σ_a
	- **F** There exists θ_a : \mathcal{L}_Y \longrightarrow \mathcal{L}_\emptyset such that $\theta_a \tau \simeq_{\mathsf{CPL}} \sigma_a$

- \blacktriangleright $(\theta_a \tau)(x) \leftrightarrow \sigma_q(x)$ is in CPL
- \blacktriangleright $\theta_a(\tau(x)) \leftrightarrow q$ is in CPL
- $p \rightarrow \theta_a(\tau(x))$ is in CPL
- \blacktriangleright $p \rightarrow q$ is in CPL : a contradiction !

Let φ in $\mathcal{L}_{\rightarrow}$ and $\sigma : \mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Y}$ be a unifier of φ WLOG, suppose for all $x \in \text{var}(\varphi)$, $\text{par}(\sigma(x)) \subseteq \text{par}(\varphi)$

Lemma

There exists a substitution $\epsilon:\mathcal{L}_{\mathtt{var}(\varphi)}\longrightarrow\mathcal{L}_{\mathtt{var}(\varphi)}$ such that

 \triangleright for all $x \in \text{var}(\varphi)$, $\text{par}(\epsilon(x)) \subseteq \text{par}(\varphi)$

► for all
$$
n \in \mathbb{N}
$$
, $\epsilon^n \preceq_{\text{CPL}} \sigma$

► for all $n \in \mathbb{N}$, if $n \geq \texttt{Card}(\texttt{var}(\varphi))$ then ϵ^n is a unifier of φ

Proposition

Unification with parameters in the $\mathcal{L}_{\rightarrow}$ -fragment of **CPL** is finitary

Reference

 \triangleright B., P., Mojtahedi, M. : Unification with parameters in the implication fragment of classical propositional logic. Logic Journal of the IGPL 30 (2022) 454–464.

Outline

Contents

- \blacktriangleright Definitions
- \blacktriangleright Boolean unification
- \triangleright Unification types in modal logics and description logics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Recent advances

Propositional modal language

Formulas (φ, ψ, \ldots) are constructed by means of

- \triangleright Set VAR of propositional variables x, y, ...
- \triangleright Set PAR of propositional parameters p, q, ...
- \triangleright Connectives \bot , \top , \neg , \vee , \wedge , \rightarrow , \leftrightarrow , \Box , \Diamond , ...

KORKAR KERKER EL VOLO

Formal definition of the set $\mathcal L$ of all formulas

 $\triangleright \varphi ::= x | p | \bot | \neg \varphi | (\varphi \vee \psi) | \Box \varphi$

Abbreviations

- \triangleright T, \wedge , \rightarrow , \leftrightarrow are defined as usual
- $\triangleright \Diamond$ is defined by $\Diamond \varphi$::= ¬ $\Box \neg \varphi$

Propositional modal logic

Set L of formulas closed under uniform substitution and such that

- 1. L contains all tautologies
- 2. L contains the distribution axiom : $\square(x \to y) \to (\square x \to \square y)$

- 3. L is closed under modus ponens : $\frac{x \times y}{y}$
- 4. **L** is closed under generalization : $\frac{x}{\Box x}$

Some computational results

Rybakov (1984, 1997)

 \triangleright The unification problem and the admissibility problem in "transitive" modal logics such as $K4$, $S4$, ... are decidable

Chagrov (1992)

 \triangleright There exists a decidable propositional modal logic with an undecidable admissibility problem

Wolter and Zakharyaschev (2008)

 \triangleright The unification problem and the admissibility problem for any propositional modal logic between K_U and $K4_U$ are undecidable

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Some computational results

 \triangleright There exists a decidable propositional modal logic with an NP-complete consistency problem and an undecidable admissibility problem : modal logic $Alt_1 \times Alt_1$

KORKAR KERKER EL VOLO

Syntax of modal logic $Alt_1 \times Alt_1$ Formulas

$$
\blacktriangleright \varphi ::= x \mid \bot \mid \neg \varphi \mid (\varphi \vee \psi) \mid \Box_1 \varphi \mid \Box_2 \varphi
$$

Abbreviations

- \blacktriangleright \top , \wedge , \rightarrow , \leftrightarrow are defined as usual
- \triangleright \Diamond_1 is defined by $\Diamond_1\varphi$::= $\neg\Box_1\neg\varphi$
- \triangleright \diamondsuit is defined by \diamondsuit := $\neg \Box$ 2 $\neg \varphi$

Some computational results

Axiomatization of modal logic $Alt_1 \times Alt_1$

- $\blacktriangleright \Box_1(x \to y) \to (\Box_1 x \to \Box_1 y)$
- $\blacktriangleright \Box_2(x \to y) \to (\Box_2 x \to \Box_2 y)$
- \longrightarrow $\frac{x}{y}$ y
- \blacktriangleright $\frac{x}{\Box_1 x}$
- \blacktriangleright $\frac{x}{\Box_2 x}$
- $\triangleright \Diamond_1 x \rightarrow \Box_1 x$
- $\triangleright \Diamond_2 x \rightarrow \Box_2 x$
- $\blacktriangleright \Box_1 \Box_2 X \leftrightarrow \Box_2 \Box_1 X$
- $\triangleright \Diamond_1 \Box_2 x \rightarrow \Box_2 \Diamond_1 x$

Remark : Consistency problem in $Alt_1 \times Alt_1$ is NP-complete

KORK ERKER ADE YOUR

Proof: Small model property

Some computational results

Remark : Admissibility problem in $Alt_1 \times Alt_1$ is undecidable Proof:

- \triangleright Consider the tiling problem defined by Lutz *et al.* (2007)
	- \triangleright given a finite set Δ of domino-types, binary relations V and H on Δ and subsets Δ_{μ} , Δ_{d} , Δ_{r} and Δ_{l} of Δ , determine whether there exists a triple (I, J, f) where $I, J > 1$ and
		- $f : \{1, \ldots, l\} \times \{1, \ldots, J\} \longrightarrow \Delta$ such that
			- \triangleright for all $(i, j) \in \{1, ..., I 1\} \times \{1, ..., J\},\$ $(f(i, i), f(i + 1, i)) \in V$,
			- \triangleright for all $(i, j) \in \{1, ..., I\} \times \{1, ..., J 1\},$ $(f(i, i), f(i, i + 1)) \in H$,
			- \triangleright for all $j \in \{1, \ldots, J\}$, $f(I, j) \in \Delta_{u}$,
			- \triangleright for all $j \in \{1, \ldots, J\}$, $f(1, j) \in \Delta_d$,
			- \triangleright for all $i \in \{1, \ldots, l\},\ f(i, J) \in \Delta_r$,
			- \triangleright for all $i \in \{1, \ldots, l\}$, $f(i, 1) \in \Delta_l$.

► Suppose $\Delta = {\delta_1, ..., \delta_a}$ and use the propositional variables x_1, \ldots, x_n and $y, z \ldots$

KORK ERKER ADE YOUR

Some computational results

Proof:

problem

 \blacktriangleright ... Construct the following 12 formulas

$$
(\phi_1) \Box_2 \Box_1 \neg (x_b \land x_c) \text{ where } 1 \leq b, c \leq a \text{ and } b \neq c
$$
\n
$$
(\phi_2) \Box_2 \Box_1 (x_b \rightarrow \Box_2 \lor \{x_c: (\delta_b, \delta_c) \in V\}) \text{ where } 1 \leq b \leq a
$$
\n
$$
(\phi_3) \Box_2 \Box_1 (x_b \rightarrow \Box_1 \lor \{x_c: (\delta_b, \delta_c) \in H\}) \text{ where } 1 \leq b \leq a
$$
\n
$$
(\phi_4) \Box_2 \Box_1 (y \land \Box_2 \bot \rightarrow \lor \{x_b: \delta_b \in \Delta_u\})
$$
\n
$$
(\phi_5) \Box_1 (y \land \neg z \rightarrow \Box_2 (z \rightarrow \lor \{x_b: \delta_b \in \Delta_d\}))
$$
\n
$$
(\phi_6) \Box_2 \Box_1 (z \land \Box_1 \bot \rightarrow \lor \{x_b: \delta_b \in \Delta_r\})
$$
\n
$$
(\phi_7) \Box_2 (\neg y \land z \rightarrow \Box_1 (y \rightarrow \lor \{x_b: \delta_b \in \Delta_l\}))
$$
\n
$$
(\phi_8) y \rightarrow \Box_2 y \land \Box_1 y
$$
\n
$$
(\phi_9) z \rightarrow \Box_2 z \land \Box_1 z
$$
\n
$$
(\phi_{10}) \neg y \rightarrow \Box_2 \neg y
$$
\n
$$
(\phi_{11}) \neg z \rightarrow \Box_1 \neg z
$$
\n
$$
(\phi_{12}) \neg (\neg y \land \Diamond_1 y \land \neg z \land \Diamond_2 z \land \Box_2 \Box_1 \lor \{x_b: 1 \leq b \leq a\})
$$
\n
$$
\blacktriangleright \text{Show that } \frac{\phi_1 \phi_2 \phi_3 \phi_4 \phi_5 \phi_6 \phi_7 \phi_8 \phi_9 \phi_{10} \phi_{11}}{\phi_{12}}
$$
 is not admissible if and only if there exists a correct tiling of the given tiling

Some computational results

The truth is that nothing is known about the computability of the unification problem for

- \triangleright K (elementary unification)
- \triangleright Alt₁, DAlt₁, KD, KT, KB, KDB, KTB (unification with parameters)

KORK ERKER ADE YOUR

- \triangleright Various multimodal logics
- \triangleright Various hybrid logics
- \triangleright Various description logics

Some computational results

Remark : Elementary unification is NP-complete for

- **►** any modal logic **L** containing $\Box x \rightarrow \Diamond x$ (i.e. **L** \supset **KD**)
- \triangleright any modal logic L containing $x \to \Box \Diamond x$ (i.e. L \supset KB)
- **►** any modal logic **L** containing $\Diamond x \rightarrow \Box \Diamond x$ (i.e. **L** $\supset \mathsf{K5}$)

B. and Tinchev (2016)

Elementary unification is in PSPACE for modal logic Alt_1 Jeřábek (2005, 2007, 2015, 2020)

- \triangleright The admissibility problem is $coNEXPTIME$ -complete for intuitionistic logic and transitive modal logics like $K4, S4, \ldots$
- Inification with parameters is **coNEXPTIME-complete** for modal logic S5

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Examples of unifiable formulas with their types

Examples

- \triangleright In S5 : \square x $\vee \square \neg x$ is unitary
	- $\bullet \ \sigma(x) = \Box x$
- \triangleright In IPL : $x \vee \neg x$ is finitary

$$
\blacktriangleright \sigma_\top(x) = \top
$$

- $\triangleright \sigma_1(x) = \perp$
- \triangleright In K4 : \Box x \lor $\Box\neg$ x is finitary
	- $\bullet \ \sigma_{\top}(x) = \top$
	- $\triangleright \sigma_1(x) = \perp$
- In $K : x \rightarrow \Box x$ is nullary
	- $\rightarrow \sigma_{\top}(x) = \top$
	- $\blacktriangleright \sigma_k(x) = \square^{\leq k} x \wedge \square \bot$ for each $k \in \mathbb{N}$

No known example of a modal logic with an infinitary unifiable formula

KORKAR KERKER EL VOLO

KORK ERKER ADE YOUR

Modal logic K4, i.e. $K + \Box x \rightarrow \Box \Box x$

 \blacktriangleright Syntax

- $\blacktriangleright \varphi ::= x \mid \bot \mid \neg \varphi \mid (\varphi \vee \psi) \mid \Box \varphi$
- \blacktriangleright Abbreviations
	- $\triangleright \Diamond \varphi ::= \neg \Box \neg \varphi$ $\blacktriangleright \Box^+\varphi ::= \varphi \wedge \Box \varphi$

Proposition (Rybakov 1984, 1997) K4-unification is decidable

Proposition (Ghilardi 2000) K4-unification is finitary

Ghilardi (2000) : A formula $\varphi(x_1, \ldots, x_n)$ is said to be projective if there exists a substitution σ such that

- 1. σ is a K4-unifier of φ
- 2. $\Box^+\varphi \to (x_i \leftrightarrow \sigma(x_i)) \in \mathsf{K4}$ for each *i* such that $1 \leq i \leq n$

Wroński (1995) : A formula $\varphi(x_1, \ldots, x_n)$ is said to be transparent if there exists a substitution σ such that

- 1. σ is a K4-unifier of φ
- 2. for all K4-unifiers τ of φ , $\tau(x_i) \leftrightarrow \tau(\sigma(x_i)) \in \mathsf{K}4$ for each i such that $1 \leq i \leq n$

KORKAR KERKER EL VOLO

A formula $\varphi(x_1,\ldots,x_n)$ is said to be **projective** if there exists a substitution σ such that

- 1. σ is a K4-unifier of φ
- 2. $\Box^+\varphi \to (x_i \leftrightarrow \sigma(x_i)) \in \mathsf{K4}$ for each *i* such that $1 \leq i \leq n$

Remark: The following statements hold:

- $\triangleright \Box^+\varphi \rightarrow (\psi \leftrightarrow \sigma(\psi)) \in \mathsf{K4}$ for each formula $\psi(x_1, \ldots, x_n)$
- \triangleright Such σ is a most general K4-unifier for φ
- \triangleright The set of all substitutions satisfying condition 2 is closed under compositions

KORKAR KERKER EL VOLO

A formula $\varphi(x_1,\ldots,x_n)$ is said to be **projective** if there exists a substitution σ such that

1. σ is a K4-unifier of φ

2. $\Box^+\varphi \to (x_i \leftrightarrow \sigma(x_i)) \in \mathbf{K}4$ for each *i* such that $1 \leq i \leq n$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

For all $A \subseteq \{1,\ldots,n\}$, let θ^A_φ be the substitution defined by

- $\blacktriangleright \theta_{\varphi}^{A}(x_{i}) = \Box^{+}\varphi \wedge x_{i}$ if $i \notin A$
- $\rightarrow \theta_{\varphi}^{A}(x_{i}) = \Box^{+}\varphi \rightarrow x_{i}$ if $i \in A$

Remark: The substitution θ^A_φ satisfies condition 2

A formula $\varphi(x_1,\ldots,x_n)$ is said to be projective if there exists a substitution σ such that

- 1. σ is a K4-unifier of φ
- 2. $\Box^+\varphi \to (x_i \leftrightarrow \sigma(x_i)) \in \mathsf{K4}$ for each *i* such that $1 \leq i \leq n$

For all $A \subseteq \{1,\ldots,n\}$, let θ^A_φ be the substitution defined by

$$
\blacktriangleright \theta_{\varphi}^{A}(x_{i}) = \Box^{+}\varphi \rightarrow x_{i} \text{ if } i \in A
$$

 $\blacktriangleright \theta_{\varphi}^{A}(x_{i}) = \Box^{+}\varphi \wedge x_{i}$ if $i \notin A$

Given an arbitrary enumeration A_1, \ldots, A_{2^n} of the subsets of $\{1,\ldots,n\}$, let $\theta_\varphi=\theta_\varphi^{A_1}\circ\ldots\circ\theta_\varphi^{A_{2^n}}$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Proposition

For all formulas $\varphi(x_1,\ldots,x_n)$, if $d = depth(\varphi)$ and N is the number of non-d-bisimilar-equivalent relational models over x_1, \ldots, x_n , the following statements are equivalent :

- \blacktriangleright ${\theta_\varphi}^{2N}$ is a **K**4-unifier of φ
- $\blacktriangleright \varphi$ is projective

Corollary

It is decidable to determine whether a given formula φ is projective

KORKAR KERKER EL VOLO

Lemma

For all formulas φ and for all substitutions σ , if $\sigma(\varphi) \in \mathsf{K}4$ then

- **If** There exists a formula ψ , $depth(\psi) \leq depth(\varphi)$, such that
	- $\blacktriangleright \psi$ is projective
	- \triangleright σ is a **K**4-unifier of ψ
	- $\blacktriangleright \Box^+ \psi \to \varphi \in \mathsf{K4}$

Proposition

K4-unification is finitary,

For all formulas $\varphi(x_1, \ldots, x_n)$, the cardinality of a basis of K4-unifiers is finite

Reference

 \triangleright Ghilardi, S. : Best solving modal equations. Annals of Pure and Applied Logic 102 (2000) 183–198.

KORK ERKER ADE YOUR

Intuitionistic propositional logic — IPL Ghilardi (1999) :

 \triangleright for every IPL-unifiable formula φ , one can find a finite number of projective formula ψ_1, \ldots, ψ_n such that (i) for all $k = 1 \dots n$, $\psi_k \to \varphi$ is in **IPL** and (ii) every **IPL**-unifier for φ is also an **IPL**-unifier for one of the ψ_1, \ldots, ψ_n

Logic of Gödel and Dummett $-$ LC LC is IPL $+(x \rightarrow y) \vee (y \rightarrow x)$ Wroński (2008) :

- In all extensions of LC , unifiable formulas have projective unifiers
- An intermediate logic \bf{L} in which all unifiable formulas have projective unifiers must contain LC

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Extensions of S4.3 **S**4.3 is S 4 + $\Box(\Box x \rightarrow y) \vee \Box(\Box y \rightarrow x)$ Dzik and Wojtylak (2011) :

- In all extensions of $S4.3$, unifiable formulas have projective unifiers
- \triangleright Extensions of $S4$ in which all unifiable formulas have projective unifiers must contain **S**4.3

Extensions of **K4D1**

```
K4D1 is \mathsf{K4} + \square( \square x \rightarrow y) \vee \square( \square y \rightarrow x)Kost (2018) :
```
In all extensions of $K4D1$, unifiable formulas have projective unifiers

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Extensions of $K4$ in which all unifiable formulas have projective unifiers must contain **K4D1**

KORK ERKER ADE YOUR

Modal logic S5, i.e. $KT + \Diamond x \rightarrow \Box \Diamond x$

 \blacktriangleright Syntax

- $\blacktriangleright \varphi ::= x \mid \bot \mid \neg \varphi \mid (\varphi \vee \psi) \mid \Box \varphi$
- \blacktriangleright Abbreviations
	- $\blacktriangleright \Diamond \varphi ::= \neg \Box \neg \varphi$

Proposition

S5-unification is decidable

Proposition

S5-unification is unitary

Lemma S5-unifiable formulas are S5-projective **Proof:** Consider an S5-unifier σ of φ

- I let ϵ be the substitution such that $\epsilon(x) = (\Box \varphi \wedge x) \vee (\neg \Box \varphi \wedge \sigma(x))$
- **Fact:** ϵ is a projective unifier of φ

Proposition

S5 unification is unitary : every unifiable formula has a mgu

KORKAR KERKER EL VOLO

Remark about ϵ

If σ is atom-free then ϵ can be defined by

$$
\blacktriangleright \epsilon(x) = \Box \varphi \land x \text{ when } \sigma(x) = \bot
$$

 $\rightarrow \epsilon(x) = \Box \varphi \rightarrow x$ when $\sigma(x) = \top$

Remark

 \triangleright The proofs that CPL and S5 are unitary are based on the fact that every unifiable formula is projective in these logics

It is true that

 \triangleright if every L-unifiable formula has a projective unifier then L-unification is unitary

However

- \triangleright S4.2Grz-unification is unitary (Ghilardi 2000)
- \triangleright some S4.2Grz-unifiable formulas are not projective (Dzik 2006)

KORK ERKER ADE YOUR

Modal logic K

- \blacktriangleright Syntax
	- $\blacktriangleright \varphi ::= x \mid \perp \mid \neg \varphi \mid (\varphi \vee \psi) \mid \Box \varphi$
- \blacktriangleright Abbreviations

\n- ♦
$$
\varphi ::= \neg \Box \neg \varphi
$$
\n- □^{*n*} $\varphi ::= \Box^0 \varphi \land \ldots \land \Box^{n-1} \varphi$ for each $n \in \mathbb{N}$
\n

Open question

Is K-unification decidable ?

Remark

K-unification is not unitary since

 $\triangleright \sigma_T(x) = T$ and $\sigma_T(x) = \bot$ constitute a basis of unifiers in K of the formula $\Box x \vee \Box \neg x$

KORK ERKER ADE YOUR

Our aim Demonstrate that K-unification is nullary by studying the K-unifiers of

 \blacktriangleright $x \to \Box x$

Consider the following substitutions

- $\blacktriangleright \sigma_n(x) = \Box^{ for each $n \in \mathbb{N}$$
- $\triangleright \sigma_{\top}(x) = \top$

Lemma

 \triangleright σ_n is a K-unifier of $x \to \Box x$ for each $n \in \mathbb{N}$

KORK ERKER ADE YOUR

 \triangleright σ _T is a K-unifier of $x \to \Box x$

Our aim

Demonstrate that K-unification is nullary by studying the K-unifiers of

 \triangleright $x \rightarrow \square x$

Consider the following substitutions

- $\blacktriangleright \sigma_n(x) = \square^{\leq n} x \wedge \square^n \bot$ for each $n \in \mathbb{N}$
- $\rightarrow \sigma_T(x) = T$

Lemma

For all K-unifiers σ of $x \to \Box x$ and for all $n \in \mathbb{N}$, $\sigma \prec_K \sigma_n$ if and only if $\sigma(x) \to \Box^n \bot \in K$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Lemma

For all substitutions σ , $\sigma \preceq_K \sigma_T$ if and only if $\sigma(x) \in \mathbf{K}$

Proposition

For all formulas φ and for all $n \in \mathbb{N}$, if $depth(\varphi) \leq n$ then

If $\varphi \to \Box \varphi \in K$ then either $\varphi \to \Box^n \bot \in K$, or $\varphi \in K$

Corollary

The following substitutions form a complete set of K-unifiers for the formula $x \to \Box x$

- $\blacktriangleright \sigma_n(x) = \Box^{ for each $n \in \mathbb{N}$$
- $\triangleright \sigma_{\top}(x) = \top$

Corollary

K-unification is nullary

Reference

Detabek, E. : Blending margins: the modal logic **K** has nullary unification type. Journal of Logic and Computation 25 (2015) 1231–1240.**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Directed unification

L has directed unification if for all L-unifiable formulas φ and for all L-unifiers σ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{\gamma}$ and τ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Z}$ of φ , there exists an L-unifier θ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{\mathcal{T}}$ of φ such that

- \blacktriangleright $\theta \prec_{\text{I}} \sigma$
- \blacktriangleright $\theta \prec_{\text{I}} \tau$

Lemma

If L has directed unification then either L is unitary, or L is nullary

KORKAR KERKER EL VOLO
Extensions of $\mathsf{K4} = \mathsf{K} + \square x \rightarrow \square \square x$

 \blacktriangleright Define the abbreviations

$$
\textcolor{red}{\blacktriangleright} \ \Box^+ \varphi := \bigl(\Box \varphi \wedge \varphi \bigr)
$$

- $\blacktriangleright \ \Diamond^+ \varphi := (\Diamond \varphi \vee \varphi)$
- ► K4.2⁺ is K4 + $\Diamond^+\Box^+\varphi \to \Box^+\Diamond^+\varphi$
- An extension L of $K4$ has directed unification if and only if $\mathsf{K}4.2^+\subseteq \mathsf{L}$

References

- \triangleright Ghilardi, S., Sacchetti, L. : Filtering unification and most general unifiers in modal logic. Journal of Symbolic Logic 69 (2004) 879–906.
- \triangleright Jerábek, E. : Logics with directed unification. In : Algebra and Coalgebra meet Proof Theory, Utrecht, Netherlands (2013).

Extensions of $\mathsf{K5} = \mathsf{K} + \Diamond x \rightarrow \Box \Diamond x$

Remark : Every extension L of K5 has directed unification **Proof :** Consider an L-unifiable formula φ

- \triangleright Let σ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_Y$ and τ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_Z$ be **L**-unifiers of φ and t be a new propositional variable
- ► Let θ : $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{\gamma \cup Z \cup \{t\}}$ be the substitution defined for all $x \in \text{var}(\varphi)$ by
	- $\blacktriangleright \theta(x) = ((\Box \Box t \land (t \lor \Diamond \top)) \land \sigma(x)) \lor ((\Diamond \Diamond \neg t \lor (\neg t \land \Box \bot)) \land \tau(x))$
- \triangleright One can prove that
	- \blacktriangleright $\theta \preceq_{\text{I}} \sigma$
	- \triangleright $\theta \preceq_{\mathsf{L}} \tau$
	- \blacktriangleright $\theta(\varphi)$ is in **L**

Reference

▶ Alizadeh, M., Ardeshir, M., B., P., Mojtahedi, M. : Unification types in Euclidean modal logics. Logic Journal of the IGPL (to appear).KID KA KERKER KID KO

Description language FL_0

The set of all concepts is defined by

 \triangleright C ::= X | A | T | (C \sqcap D) | \forall R.C

Two concept descriptions C, D are **equivalent** $(C \equiv D)$ if

 \triangleright $C \leftrightarrow D$ is valid in the class of all frames

Proposition Equivalence of FL_0 -concepts can be decided in polynomial time

Reference

Levesque, H., Brachman, R.: Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence 3 (1987) 78–93.

KORKAR KERKER EL VOLO

Description language FL_0

The substitution σ unifies the concept descriptions C and D if

KORK ERKER ADE YOUR

 $\triangleright \sigma(C) \equiv \sigma(D)$

C and D are FL_0 -unifiable if they have a unifier

Example The substitution σ defined by

- $\blacktriangleright \sigma(X) = A \sqcap \forall S.A$
- $\triangleright \sigma(Y) = \forall R.A$
- is a unifier of the FL_0 -concept descriptions
	- $C = \forall R \forall R A \sqcap \forall R X$
	- $D = Y \sqcap \forall R. Y \sqcap \forall R. \forall S.A$

Description language FL_0

Proposition

- \triangleright Unification in idempotent Abelian monoids with homomorphism is nullary
- \blacktriangleright \mathcal{FL}_0 is nullary try to unify $\forall R.X \sqcap \forall R.Y$ and $Y \sqcap \forall R.\forall R.Z$

Proposition

 \triangleright Solvability of unification problems in FL_0 can be decided in deterministic exponential time

References

- \triangleright Baader, F. : Unification in commutative theories. Journal of Symbolic Computation 8 (1989) 479–497.
- \triangleright Baader, F., Narendran, P. : Unification of concept terms in description logics. Journal of Symbolic Computation 31 (2001) 277–305.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Description language \mathcal{EL}

Syntax of the description language \mathcal{EL}

 \triangleright C ::= X | A | T | (C \sqcap D) | $\exists R$.C

Two concept descriptions C, D are **equivalent** $(C \equiv D)$ if

 \triangleright $C \leftrightarrow D$ is valid in the class of all frames

Proposition Equivalence of \mathcal{EL} -concept descriptions can be decided in polynomial time

Reference

▶ Baader, F., Molitor, R., Tobies, S. : Tractable and decidable fragments of conceptual graphs. In Tepfenhart, W., Cyre, W. (editors) : Conceptual Structures: Standards and Practices. Springer (1999) 480–493.

Description language \mathcal{EL}

The substitution σ unifies the concept descriptions C and D if

KORK ERKER ADE YOUR

 $\triangleright \sigma(C) \equiv \sigma(D)$

C and D are \mathcal{EL} -unifiable if they have a unifier

Example The substitution σ defined by

$$
\blacktriangleright \sigma(X) = \top
$$

 $\triangleright \sigma(Y) = Y$

is a unifier of the \mathcal{EL} -concept descriptions

- $C = X \sqcap \exists R \ Y$
- $D = \exists R.Y$

Description language \mathcal{EL}

Proposition

- \triangleright Unification in \mathcal{EL} is NP-complete
- \triangleright EL is nullary try to unify $X \sqcap \exists R.Y$ and $\exists R.Y$

Proposition

 \blacktriangleright Unification in $\mathcal{EL}^{-\top}$ is PSPACE-complete

References

- ▶ Baader, F., Binh, N., Borgwardt, S., Morawska, B. : Unification in the description logic \mathcal{EL} without the top concept. In Bjørner, N., Sofronie-Stokkermans, V. (editors) : Automated Deduction — CADE 23. Springer (2011) 70–84.
- \triangleright Baader, F., Morawska, B. : Unification in the description logic \mathcal{EL} . In Treinen, R. (editor) : Rewriting Techniques and Applications. Springer (2009) 350–364.

Outline

Contents

- \blacktriangleright Definitions
- \blacktriangleright Boolean unification
- \triangleright Unification types in modal logics and description logics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Recent advances

Restricted unification in the description logics FL_0 and EL

Proposition

- \triangleright \mathcal{FL}_0 with restriction on role depth is finitary
- \triangleright \mathcal{EL} with restriction on role depth is nullary

References

- ▶ Baader, F., Fernández Gil, O., Rostamigiv, M. : Restricted unification in the DL FL_0 . In: Frontiers of Combining Systems. Springer (2021) 81–97.
- \triangleright Baader, F., Rostamigiv, M. : Restricted unification in the DL EL . In: Proceedings of the 34th International Workshop on Description Logics. CEUR (2021) paper 4.

Elementary unification in $\mathsf{K} + \square^n \bot$ and $\mathsf{Alt}_1 + \square^n \bot$ for $n > 2$ **Proposition :** For all $n > 2$

- ► $K + \square^n \bot$ is not unitary for elementary unification
- Alt₁ + \Box ⁿ \bot is either unitary, or nullary for elementary unification
- **Proof**: Case when $n = 2$
	- For $K + \Box^2 \bot$, consider the formula $\Box x \vee \Box \neg x$ and show that the substitutions $\sigma_{\top}(x) = \Diamond \top \land x$ and $\sigma_{\top}(x) = \Box \bot \lor x$ constitute a basis of unifiers

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

For Alt₁ + $\Box^2 \bot$, show that Alt₁ + $\Box^n \bot$ is directed for elementary unification

Elementary unification in $\mathbf{K} + \square^n \square$ and $\mathbf{Alt}_1 + \square^n \square$ for $n > 2$

Let φ be unifiable and $\sigma : \mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_Y$ be a unifier of φ

- **Lemma :** There exists an unifier $\tau : \mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{var(\varphi)}$ of φ such that $\tau \prec \sigma$
- **Proposition :** Elementary unification in $K + \Boxⁿ \bot$ and $\mathsf{Alt}_1 + \square^n \bot$ is either unitary, or finitary
- **► Corollary :** Elementary unification in $K + \square^n \bot$ is finitary and elementary unification in $\mathsf{Alt}_1 + \square^n \bot$ is unitary

References

- \blacktriangleright B., P., Gencer, Ç. Rostamigiv, M., Tinchev, T. : About the unification type of $\mathsf{K} + \square \square \bot$. Annals of Mathematics and Artificial Intelligence 90 (2022) 481–497.
- ▶ B., P., Gencer, C. Rostamigiv, M., Tinchev, T.: Remarks about the unification types of some locally tabular normal modal logics. Logic Journal of t[he](#page-82-0) [IG](#page-84-0)[PL](#page-83-0) [\(](#page-84-0)[to](#page-0-0) [a](#page-107-0)[pp](#page-0-0)[ear](#page-107-0)[\).](#page-0-0)

Extensions of $\mathsf{K5} = \mathsf{K} + \Diamond x \rightarrow \Box \Diamond x$

Proposition (elementary unification)

- Extensions of $K45 = K5 + \square x \rightarrow \square \square x$ are projective
- \triangleright K5 and KD5 are unitary

Open question

Are all extensions of K5 unitary for elementary unification?

References

- \blacktriangleright Alizadeh, M., Ardeshir, M., B., P., Mojtahedi, M. : Unification types in Euclidean modal logics. Logic Journal of the IGPL (to appear).
- \triangleright Kost, S. : Projective unification in transitive modal logics. Logic Journal of the IGPL 26 (2018) 548–566.

KORK ERKER ADE YOUR

 $KD = K + \Diamond T$

Proposition KD is nullary for unification with parameters

$$
\blacktriangleright (x \to p) \land (x \to \Box (p \to x))
$$

Open questions

Type of KD for elementary unification ? Decidability of unification with parameters in **KD**?

Reference

 \triangleright B., P., Gencer, C. : KD is nullary. Journal of Applied Non-Classical Logics 27 (2018) 196–205.

KORK ERKER ADE YOUR

$$
KT = K + \Box x \rightarrow x
$$

Proposition

KT is nullary for unification with parameters

 $\blacktriangleright (x \rightarrow p) \land (x \rightarrow \Box (q \rightarrow y)) \land (y \rightarrow q) \land (y \rightarrow \Box (p \rightarrow x))$

Open questions

Type of KT for elementary unification? Decidability of unification with parameters in KT ?

Reference

 \triangleright **B., P.** : Remarks about the unification type of several non-symmetric non-transitive modal logics. Logic Journal of the IGPL 27 (2019) 639–658.

KORK ERKER ADE YOUR

$$
KB = K + x \rightarrow \Box \Diamond x
$$

Proposition

KB is nullary for unification with parameters

 \triangleright $x \rightarrow (\neg p \land \neg q \rightarrow \Box(p \land \neg q \rightarrow \Box(\neg p \land q \rightarrow \Box(\neg p \land \neg q \rightarrow x))))$

Open questions

Type of KB for elementary unification ? Decidability of unification with parameters in **KB**?

Reference

 \triangleright B., P., Gencer, C. : About the unification type of modal logics between KB and KTB. Studia Logica 108 (2020) 941–966.

Alt₁ = $K + \Diamond x \rightarrow \Box x$

Proposition

- Alt₁ is nullary try to unify $x \to \Box x$
- \triangleright The elementary unification problem (without parameters) in $Alt₁$ is decidable (in PSPACE)

Open question

Decidability of unification with parameters in Alt_1 ?

Reference

 \triangleright B., P., Tinchev, T. : Unification in modal logic Alt₁. In Beklemishev, L., Demri, S., Máté, A. (editors) : Advances in Modal Logic. Volume 11. College Publications (2016) 117–134.**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Conclusion

Some open problems

Decidability of

- \triangleright elementary unification in modal logic **K**?
- ighthrounively unification with parameters in modal logic KB ? in modal logics **KD, KDB** ? in modal logics **KT, KTB** ? in modal logic Alt_1 ?
- \triangleright unification in the implicative fragment of modal logics?

KORKAR KERKER EL VOLO

 \triangleright unification in the positive fragment of modal logics?

Exact complexity of

unification in Alt_1 , $K4$, $S4$, ...

Conclusion

Some open problems

Type of

- \triangleright KB, KD, KDB, KT, KTB for elementary unification ?
- \triangleright fusions of modal logics ? Products of modal logics ?
- non-transitive extensions of $K5$ and other locally tabular modal logics ?
- \blacktriangleright unification in the implicative fragment of modal logics ?

KORK ERKER ADE YOUR

 \blacktriangleright unification in the positive fragment of modal logics ?

Thank you !

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

- \triangleright ALIZADEH, M., M. ARDESHIR., P. BALBIANI, and M. MOJTAHEDI, 'Unification types in Euclidean modal logics', Logic Journal of the IGPL (to appear).
- **ANANTHARAMAN, S., P. NARENDRAN, and M.** RUSINOWITCH, 'Unification modulo **ACUI** plus distributivity axioms', Journal of Automated Reasoning 33:1–28, 2004.
- ▶ BAADER, F., 'Unification in commutative theories', Journal of Symbolic Computation **8** (1989) 479–497.
- \triangleright BAADER, F., 'On the complexity of Boolean unification', Information Processing Letters 67 (1998) 215–220.
- BAADER, F., N. BINH, S. BORGWARDT, and B. MORAWSKA, 'Unification in the description logic \mathcal{EL} without the top concept', In: Automated Deduction — CADE 23, Springer (2011) 70–84.

- \triangleright BAADER, F., O. FERNÁNDEZ GIL and M. ROSTAMIGIV, 'Restricted unification in the DL FL_0 ', In: Frontiers of Combining Systems, Springer (2021) 81–97.
- ▶ BAADER, F., and S. GHILARDI, 'Unification in modal and description logics', Logic Journal of the IGPL 19 (2011) 705–730.
- \triangleright BAADER, F., and R. KÜSTERS, 'Unification in a description logic with transitive closure of roles', In: Logic for Programming and Automated Reasoning, Springer (2001) 217–232.
- \triangleright BAADER, F., and R. KÜSTERS, 'Nonstandard inferences in description logics: the story so far', In: Mathematical Problems from Applied Logic I, Springer (2006) 1–76.
- ▶ BAADER, F., R. MOLITOR, and S. TOBIES, 'Tractable and decidable fragments of conceptual graphs', In: Conceptual Structures: Standards and Practices, Springer (1999) 480–493.4 D > 4 P + 4 B + 4 B + B + 9 Q O

- ▶ BAADER, F., and B. MORAWSKA, 'Unification in the description logic \mathcal{EL}' , In: Rewriting Techniques and Applications, Springer (2009) 350–364.
- \triangleright BAADER, F., and B. MORAWSKA, 'SAT encoding of unification in \mathcal{EL}' , In: Logic for Programming, Artificial Intelligence, and Reasoning, Springer (2010) 97–111.
- ▶ BAADER, F., and P. NARENDRAN, 'Unification of concept terms in description logics', Journal of Symbolic Computation 31 (2001) 277–305.
- ▶ BAADER, F., and M. ROSTAMIGIV, 'Restricted unification in the DL \mathcal{EL}' , In: Proceedings of the 34th International Workshop on Description Logics, CEUR (2021) paper 4.
- ▶ BAADER, F., and W. SNYDER, 'Unification theory', In: Handbook of Automated Reasoning, Elsevier (2001) 439–526.

- ▶ BABENYSHEV, S., and V. RYBAKOV, 'Linear temporal logic LTL: basis for admissible rules', Journal of and Computation 21 (2010) 157–177.
- ▶ BABENYSHEV, S., and V. RYBAKOV, 'Unification in linear temporal logic LTL', Annals of Pure and Applied Logic 162 (2011) 991–1000.
- BABENYSHEV, S., V. RYBAKOV, R. SCHMIDT, and D. Tishkovsky, 'A tableau method for checking rule admissibility in S4', Electronic Notes in Theoretical Computer Science 262 (2010) 17–32.
- \triangleright BALBIANI, P., 'Remarks about the unification type of several non-symmetric non-transitive modal logics', Logic Journal of the IGPL 27 (2019) 639–658.
- \triangleright BALBIANI, P., and C. GENCER, 'KD is nullary', Journal of Applied Non-Classical Logics 27 (2017) 196–205.

- \triangleright BALBIANI, P., and C. GENCER, 'Unification in epistemic logics', Journal of Applied Non-Classical Logics 27 (2017) 91–105.
- \triangleright BALBIANI, P., and C. GENCER, 'About the unification type of modal logics between KB and KTB', Studia Logica 108 (2020) 941–966.
- ▶ BALBIANI, P., Ç. GENCER, M. ROSTAMIGIV, and T. TINCHEV, 'About the unification type of $\mathsf{K} + \square \square \bot$ ', Annals of Mathematics and Artificial Intelligence 90 (2022) 481–497.
- BALBIANI, P., C. GENCER, M. ROSTAMIGIV, and T. Tinchev, 'Remarks about the unification types of some locally tabular normal modal logics', Logic Journal of the IGPL (to appear).
- ▶ BALBIANI, P., and M. MOJTAHEDI, 'Unification with parameters in the implication fragment of Classical Propositional Logic', Logic Journal of the IGPL 30 (2022) 454–464.4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright BALBIANI, P., and T. TINCHEV, 'Unification in modal logic $Alt₁'$, In: Advances in Modal Logic, College Publications (2016) 117–134.
- ▶ BALBIANI, P., and T. TINCHEV, 'Elementary unification in modal logic KD45', Journal of Applied Logics 5 (2018) 301–317.
- ▶ BEZHANISHVILI, N., and D. DE JONGH, Extendible formulas in two variables in intuitionistic logic, Studia Logica 100 (2012) 61–89.
- BLACKBURN, P., M. DE RIJKE, and Y. VENEMA, Modal Logic, Cambridge University Press (2001).
- ▶ BÜTTNER, W., and H. SIMONIS, 'Embedding Boolean expressions into logic programming', Journal of Symbolic Computation 4 (1987) 191–205.

- \triangleright CHAGROV, A., 'Decidable modal logic with undecidable admissibility problem', Algebra and Logic 31 (1992) 83–93.
- \triangleright CHAGROV, A., and M. ZAKHARYASCHEV, Modal Logic, Oxford University Press (1997).
- \triangleright CINTULA, P., and G. METCALFE, 'Admissible rules in the implication-negation fragment of intuitionistic logic', Annals of Pure and Applied Logic 162 (2010) 162–171.
- \triangleright Dzik, W., 'Unitary unification of S5 modal logics and its extensions', Bulletin of the Section of Logic 32 (2003) 19–26.
- \triangleright DZIK, W., 'Transparent unifiers in modal logics with self-conjugate operators', Bulletin of the Section of Logic 35 (2006) 73–83.

- \triangleright DZIK, W., Unification Types in Logic, Wydawnicto Uniwersytetu Slaskiego (2007).
- \triangleright DZIK, W., 'Unification and slices in intermediate and in some modal logics', In: Topology, Algebra and Categories in Logic, Amsterdam, Netherlands (2009).
- \triangleright DZIK, W., 'Remarks on projective unifiers', Bulletin of the Section of Logic 40 (2011) 37–46.
- DZIK, W., S., KOST, and P. WOJTYLAK, 'Finitary' unification in locally tabular modal logics characterized', Annals of Pure and Applied Logic (to appear).
- \triangleright DZIK, W., and P. WOJTYLAK, 'Projective unification in modal logic', Logic Journal of the IGPL 20 (2012) 121–153.

- DZIK, W., and P. WOJTYLAK, 'Modal consequence relations extending **S**4.3: an application of projective unification'. Notre Dame Journal of Formal Logic 57 (2013) 523–549.
- \triangleright FERNÁNDEZ GIL, O., Hybrid Unification in the Description Logic \mathcal{EL} , Master Thesis of Technische Universität Dresden (2012).
- \triangleright GENCER, C., and D. DE JONGH, 'Unifiability in extensions of K4', Logic Journal of the IGPL 17 (2009) 159–172.
- GHILARDI, S., 'Unification through projectivity', Journal of Logic and Computation 7 (1997) 733–752.
- \triangleright GHILARDI, S., 'Unification in intuitionistic logic', Journal of Symbolic Logic 64 (1999) 859–880.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \triangleright GHILARDI, S., 'Best solving modal equations', Annals of Pure and Applied Logic 102 (2000) 183–198.
- \triangleright GHILARDI, S., and L. SACCHETTI, 'Filtering unification and most general unifiers in modal logic', Journal of Symbolic Logic 69 (2004) 879–906.
- \blacktriangleright IEMHOFF, R., 'On the admissible rules of intuitionistic propositional logic', Journal of Symbolic Computation 66 (2001) 281–294.
- \triangleright IEMHOFF, R., 'A syntactic approach to unification in transitive reflexive modal logics', Notre Dame Journal of Formal Logic 57 (2016) 233–247.
- \blacktriangleright IEMHOFF, R., and G. METCALFE, 'Proof theory for admissible rules', Annals of Pure and Applied Logic 159 (2009) 171–186.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright JERABEK, E., 'Complexity of admissible rules', Archive for Mathematical Logic 46 (2007) 73–92.
- \triangleright JERABEK, E., 'Logics with directed unification', In: Algebra and Coalgebra meet Proof Theory, Utrecht, Netherlands (2013).
- \triangleright JE \check{R} ABEK, E., 'Blending margins: the modal logic K has nullary unification type', Journal of Logic and Computation 25 (2015) 1231–1240.
- \triangleright KNUTH, D., and P. BENDIX, 'Simple word problems in universal algebras', In: Computational Problems in Abstract Algebra, Pergamon Press (1970) 263–297.
- \triangleright KOST, S., 'Projective unification in transitive modal logics', Logic Journal of the IGPL 26 (2018) 548–566.

- \triangleright LEVESQUE, H., and R. BRACHMAN, 'Expressiveness and tractability in knowledge representation and reasoning', Computational Intelligence 3 (1987) 78–93.
- ► LÖWENHEIM, L., 'Über das Auflösungsproblem im logischen Klassenkalkül', Sitzungsberichte der Berliner mathematischen Gesellschaft 7 (1908) 89–94.
- ▶ LUTZ, C., D. WALTHER, and F. WOLTER, 'Conservative extensions in expressive description logics', In: IJCAI'07: Proceedings of the 20th international joint conference on Artifical intelligence, Morgan Kaufmann (2007) 453–458.
- \triangleright MARTIN, U., T. NIPKOW, 'Unification in Boolean rings', Journal of Automated Reasoning 4 (1988) 381-396.
- \triangleright MARTIN, U., and T. NIPKOW, 'Boolean unification the story so far', Journal of Symbolic Computation 7 (1989) 275–293.
- \triangleright PRUCNAL, T., 'On the structural completeness of some pure implicational propositional calculi', Studia Logica 30 (1972) 45–50.**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

- \triangleright ROBINSON, J., 'A machine oriented logic based on the resolution principle', Journal of the ACM 12 (1965) 23–41.
- \triangleright ROSTAMIGIV, M., About the Type of Modal Logics for the Unification Problem, Doctoral thesis of the University of Toulouse 3 (2020).
- \triangleright RUDEANU, S., Boolean Functions and Equations, Elsevier (1974).
- \triangleright RYBAKOV, V., 'Admissible rules for pretable modal logics', Algebra and Logic 20 (1981) 440–464
- \triangleright RYBAKOV, V., 'A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23 (1984) 369–384.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright RYBAKOV, V., 'Bases of admissible rules of the logics S4 and Int', Algebra and Logic 24 (1985) 55-68.
- \triangleright RYBAKOV, V., Admissibility of Logical Inference Rules, Elsevier (1997).
- \triangleright RYBAKOV, V., 'Construction of an explicit basis for rules admissible in modal system S4', Mathematical Logic Quarterly 47 (2001) 441–446.
- \triangleright RYBAKOV, V., 'Linear temporal logic with until and next, logical consecutions', Annals of Pure and Applied Logic 155 (2008) 32–45.
- ▶ RYBAKOV, V., M. TERZILER, and C. GENCER, 'An essay on unification and inference rules for modal logics', Bulletin of the Section of Logic 28 (1999) 145–157.

- ▶ RYBAKOV, V., M. TERZILER, and C. GENCER, 'An essay on unification and inference rules for modal logics', Bulletin of the Section of Logic 28 (1999) 145–157.
- \triangleright SIEKMANN, J., 'Unification theory', Journal of Symbolic Computation 7 (1989) 207–274.
- \triangleright SOFRONIE-STOKKERMANS, V., 'Locality and subsumption testing in \mathcal{EL} and some of its extensions', In: Advances in Modal Logic. Volume 7, College Publications (2008) 315–339.
- ▶ WOLTER, F., and M. ZAKHARYASCHEV, 'Undecidability of the unification and admissibility problems for modal and description logics', ACM Transactions on Computational Logic 9:25:1–25:20, 2008.
- \triangleright WRONSKI, A., 'Transparent unification problem', Reports on Mathematical Logic 29 (1995) 105–107.

- \triangleright WRONSKI, A., 'Unitary unification for equivalential algebras and other structures related to logic', In: 11th International Congress of Logic, Methodology and Philosophy of Science, Cracow, Poland (1999).
- \triangleright WROŃSKI, A., 'Transparent verifiers in intermediate logics', In: 54th Conference in History of Mathematics, Cracow, Poland (2008).

4 D > 4 P + 4 B + 4 B + B + 9 Q O