## Unification types in modal logics

#### Philippe Balbiani

Logic, Interaction, Language and Computation Toulouse Institute of Computer Science Research CNRS — Toulouse University, France



Institut de Recherche en Informatique de Toulouse CNRS - INP - UT3 - UT1 - UT2J

# Outline

#### Contents

- Definitions
- Boolean unification
- Unification types in modal logics and description logics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent advances

# Unification in an equational theory E

- Equational unification
  - problems of making given terms equal modulo E by replacing their variables by terms

## Unification in a propositional logic ${\sf L}$

#### Logical unification

problems of making given formulas equivalent in L by replacing their variables by formulas

## References

Baader, F., Snyder, W. : Unification theory. In : Handbook of Automated Reasoning, Elsevier (2001) 439–526.

 Siekmann, J.: Unification theory. Journal of Symbolic Computation 7 (1989) 207–274.

## Let us consider a propositional logic ${\bm \mathsf L}$ like

- Classical Propositional Logic CPL, Intuitionistic Propositional Logic IPL, ...
- Propositional modal logics S4, S5, ...
- Description logics  $\mathcal{FL}_0, \mathcal{EL}, \ldots$

## Unification problems in ${\bm \mathsf L}$

Given a pair  $(\varphi, \psi)$  of formulas

▶ is there a substitution  $\sigma$  such that  $\sigma(\varphi) \leftrightarrow \sigma(\psi)$  is in L ?

Given finitely many pairs  $(\varphi_1, \psi_1), \ldots, (\varphi_n, \psi_n)$  of formulas

▶ is there a substitution  $\sigma$  such that  $\sigma(\varphi_1) \leftrightarrow \sigma(\psi_1), \ldots, \sigma(\varphi_n) \leftrightarrow \sigma(\psi_n)$  are in L ?

#### Given a formula $\varphi$

• is there a substitution  $\sigma$  such that  $\sigma(\varphi)$  is in **L** ?

Language of  $\boldsymbol{\mathsf{L}}$  : formulas are constructed by means of

- Variables x, y, ...
- Parameters p, q, ...
- Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\Box$ ,  $\Diamond$ , ...

## Elementary unification in L

- Given a parameter-free formula  $\psi(x_1, \ldots, x_n)$
- Determine whether there exists formulas  $\varphi_1, \ldots, \varphi_n$  such that  $\psi(\varphi_1, \ldots, \varphi_n)$  is in **L**

#### Unification with parameters in L

- Given a formula  $\psi(p_1, \ldots, p_m, x_1, \ldots, x_n)$
- Determine whether there exists formulas  $\varphi_1, \ldots, \varphi_n$  such that  $\psi(p_1, \ldots, p_m, \varphi_1, \ldots, \varphi_n)$  is in L

In Classical Propositional Logic **CPL**, Intuitionistic Propositional Logic **IPL**, ...

- Elementary unifiability is equivalent to consistency
- Why ? Use Uniform Substitution
- In propositional modal logic S4, S5, ...
  - Elementary unifiability is not equivalent to consistency
  - ▶ Why ? Consider the formula  $\Diamond x \land \Diamond \neg x$  and use Uniform Substitution

## Admissibility in ${\ensuremath{\mathsf{L}}}$

► The rule of inference <sup>φ<sub>1</sub></sup> ... <sup>φ<sub>m</sub></sup>/<sub>ψ</sub> is admissible in L if for all substitutions σ, if σ(φ<sub>1</sub>), ..., σ(φ<sub>m</sub>) are in L then σ(ψ) is in L

## Unifiability by means of admissibility

- If L is consistent then the following are equivalent :
  - Formula  $\varphi$  is unifiable in L
  - Rule of inference  $\frac{\varphi}{\perp}$  is non-admissible in L

## Admissibility by means of unifiability

If L is finitary or unitary then the following are equivalent :

- Rule of inference  $\frac{\varphi_1 \dots \varphi_m}{\psi}$  is admissible in L
- ► Formulas  $\sigma(\psi)$  is in **L** for each maximal **L**-unifiers  $\sigma$  of  $\varphi_1 \land \ldots \land \varphi_m$

# Suppose L is axiomatically presented (axioms + rules of inference)

## Derivability of formulas from hypothesis

- A derivation in L of formula ψ from hypothesis φ<sub>1</sub>,..., φ<sub>n</sub> is a sequence ψ<sub>1</sub>,..., ψ<sub>k</sub> of formulas such that ψ = ψ<sub>k</sub> and for all i = 1...k, at least one of the following conditions holds
  - $\psi_i$  is an instance of an axiom of **L**
  - ▶  $\psi_i$  can be obtained from  $\psi_1, \ldots, \psi_{i-1}$  by means of at least one of the rules of inference of **L**

- $\psi_i$  is equal to one of the hypothesis  $\varphi_1, \ldots, \varphi_n$
- We write  $\varphi_1, \ldots, \varphi_n \vdash_{\mathsf{L}} \psi$

### Derivability of inference rules

► The rule of inference  $\frac{\varphi_1 \dots \varphi_m}{\psi}$  is derivable in L if  $\varphi_1, \dots, \varphi_n \vdash_{\mathsf{L}} \psi$ 

Suppose L is axiomatically presented (axioms + rules of inference)

Proposition

• Every L-derivable rule of inference is admissible

Why ? Use Uniform Substitution

Structural completeness

L is said to be structurally complete if every L-admissible rule of inference is derivable

About Classical Propositional Logic **CPL** 

**CPL** is **structurally complete** : every **CPL**-admissible rule of inference is derivable

- ► Thus, admissibility in CPL is decidable
- In fact, in CPL, the admissibility problem is equivalent to the derivability problem

## About Intuitionistic Propositional Logic IPL

**IPL** is **not structurally complete** : some **IPL**-admissible rules of inference are **not derivable** 

## About Intuitionistic Propositional Logic IPL

The following rule is admissible in IPL but not derivable

• 
$$\frac{(\neg \neg x \rightarrow x) \rightarrow (x \lor \neg x)}{\neg \neg x \lor \neg x}$$
 — Lemmon-Scott rule

#### About propositional modal logic S4

The following rule is admissible in S4 but not derivable  $\frac{\Box(\Box(\Box \land \Box x \to \Box x) \to (\Box x \lor \Box \neg \Box x))}{\Box \land \Box x \lor \Box \neg \Box x} - \text{modal Lemmon-Scott rule}$ 

#### About intermediate logics

# If L is an intermediate logic — IPL $\subseteq$ L $\subseteq$ CPL — then the following are equivalent for each rule of inference $\mathcal{R}$

- $\mathcal{R}$  is admissible in L
- ► The modal translation of *R* is admissible in the greatest modal companion of L

#### Reference

► **Rybakov, V.** : Admissible rules for pretable modal logics. Algebra and Logic **20** (1981) 291–307.

# Other references Rybakov (1981)

The unification problem and the admissibility problem in extensions of propositional modal logic S4.3 are decidable

## Rybakov (1984, 1997)

► The unification problem and the admissibility problem in propositional modal logics K4, S4, ... are decidable

## Chagrov (1992)

There exists a decidable propositional modal logic with an undecidable admissibility problem

### Wolter and Zakharyaschev (2008)

The unification problem and the admissibility problem for any propositional modal logic between K<sub>U</sub> and K4<sub>U</sub> are undecidable

# Outline

#### Contents

- Definitions
- Boolean unification
- Unification types in modal logics and description logics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent advances

Definitions about unification

#### Propositional language

Formulas are constructed by means of

- Set VAR of propositional variables x, y, ...
- ▶ Set **PAR** of propositional parameters *p*, *q*, ...
- ▶ Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\Box$ ,  $\diamondsuit$ , ...

For all finite subsets X of **VAR** 

• Let  $\mathcal{L}_X$  be the set of all formulas  $\varphi$  such that  $var(\varphi) \subseteq X$ 

Definitions about unification

Substitutions are functions of the form

•  $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ 

where X, Y are finite subsets of **VAR** 

Composition of substitutions Given  $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$  and  $\tau : \mathcal{L}_Y \longrightarrow \mathcal{L}_Z$ , let

• 
$$\tau \sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Z$$
 with  $(\tau \sigma)(\varphi) = \tau(\sigma(\varphi))$ 

From now on Let **L** be a propositional logic

Definitions about unification

#### Equivalence between substitutions

Let  $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$  and  $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$ 

- $\sigma \simeq_L \tau$  if for all variables x in X,  $\sigma(x) \leftrightarrow \tau(x) \in L$
- " $\sigma$  and  $\tau$  are L-equivalent"

#### Preorder between substitutions

Let  $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$  and  $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Z$ 

•  $\sigma \preceq_L \tau$  if there exists a substitution  $\mu : \mathcal{L}_Y \longrightarrow \mathcal{L}_Z$  such that  $\mu \sigma \simeq_L \tau$ 

• " $\sigma$  is less specific, more general than  $\tau$  in L"

Definitions about unification

#### Unifiers and bases Unifiers

A substitution σ : L<sub>X</sub> → L<sub>Y</sub> is a unifier of a formula φ in L if X = var(φ) and σ(φ) ∈ L

#### Complete sets of unifiers

A set Σ of unifiers of a formula φ is complete if for all unifiers τ of φ, there exists a unifier σ of φ in Σ such that σ ≤<sub>L</sub> τ

#### Bases

A complete set Σ of unifiers of a formula is a basis if for all σ, τ in Σ, if σ ≤<sub>L</sub> τ then σ = τ

Definitions about unification

#### Unifiers and bases

#### Important property

► All bases of unifiers of a formula have the same cardinality

#### Important questions

- Given a formula, has it a unifier ?
- If so, has it a basis ?
- If so, how large is this basis ? Is this basis effectively computable ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definitions about unification

### Unification problems

#### Elementary unification in L

input : a parameter-free formula arphi

output : determine whether there exists a unifier of  $\varphi$  in  ${\rm L}$ 

#### Unification with parameters in L

input : a formula  $\varphi$ 

output : determine whether there exists a unifier of  $\varphi$  in L

Definitions about unification

### Types of formulas

#### **Nullary formulas**

A L-unifiable formula φ is nullary (or of type 0) if it has no basis

#### Infinitary formulas

A L-unifiable formula φ is infinitary (or of type ∞) if it has an infinite basis

#### **Finitary formulas**

A L-unifiable formula φ is finitary (or of type ω) if it has a finite basis of cardinality ≥ 2

#### Unitary formulas

A L-unifiable formula φ is unitary (or of type 1) if it has a finite basis of cardinality = 1

Definitions about unification

#### Types of propositional logics

The unification types being ordered by  $1 < \omega < \infty < 0$ , the unification type of L is the greatest type among the types of its unifiable formulas, i.e.

- L is nullary (or of type 0) if there exists a nullary L-unifiable formula
- ► L is infinitary (or of type ∞) if every L-unifiable formula is either infinitary, or finitary, or unitary and there exists an infinitary L-unifiable formula
- L is finitary (or of type ω) if every L-unifiable formula is either finitary, or unitary and there exists a finitary L-unifiable formula
- L is unitary (or of type 1) if every L-unifiable formula is unitary

Definitions about modal logics

## Propositional modal language

Formulas ( $\varphi$ ,  $\psi$ , . . .) are constructed by means of

- Set VAR of propositional variables x, y, ...
- ▶ Set **PAR** of propositional parameters *p*, *q*, ...
- Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\Box$ ,  $\Diamond$ , ...

Formal definition of the set  $\mathcal{L}$  of all formulas

 $\blacktriangleright \varphi ::= x \mid p \mid \bot \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$ 

Abbreviations

- $\top$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$  are defined as usual
- $\diamond$  is defined by  $\diamond \varphi$  ::=  $\neg \Box \neg \varphi$
- $\blacktriangleright \Box^{\leq k} \varphi ::= \varphi \land \Box \varphi \land \ldots \land \Box^k \varphi$

Definitions about modal logics

Propositional modal logic

Set  ${\boldsymbol{\mathsf{L}}}$  of formulas closed under uniform substitution and such that

- 1. L contains all tautologies
- 2. L contains the distribution axiom :  $\Box(x \to y) \to (\Box x \to \Box y)$

- 3. L is closed under modus ponens :  $\frac{x \times y}{y}$
- 4. L is closed under generalization :  $\frac{x}{\Box x}$

Definitions about modal logics

## Examples

Least modal logic

► K

Least modal logic containing modal logic L and formula φ
 L + φ

- Greatest modal logic
  - $\mathcal{L}$  the only inconsistent modal logic
- Greatest consistent modal logics
  - Ver =  $\mathbf{K} + \Box \bot$
  - Triv =  $\mathbf{K} + \Box x \leftrightarrow x$

Definitions about modal logics

#### Other examples



Definitions about modal logics

Important results : Let L be a consistent modal logic Ladner (1977)

▶ If L ⊆ S4 then L is PSPACE-hard

Nagle (1981)

• If  $K5 \subseteq L$  then L is in coNP

Spaan (1993)

• If  $S4.3 \subseteq L$  then L is in coNP

Folklore

▶ For all formulas  $\varphi_1, \ldots, \varphi_n, \psi$ , the following conditions are equivalent

- $\varphi_1, \ldots, \varphi_n \vdash_{\mathsf{L}} \psi$
- ▶ there exists  $k_1, \ldots, k_n \in \mathbb{N}$  such that  $\Box^{\leq k_1} \varphi_1 \land \ldots \land \Box^{\leq k_n} \varphi_n \to \psi$  is in **L**

Definitions about modal logics

#### Relational semantics

Frames are structures (W, R) where

- ► W is a nonempty set of *possible worlds s*, *t*, ...
- R is a binary relation of accessibility on W

Relational models are structures (W, R, V) where

- ▶ (W, R) is a frame
- V : **VAR**  $\cup$  **PAR**  $\longrightarrow \wp(W)$  is a *valuation*

Definitions about modal logics

Relational semantics Truth conditions in a model (W, R, V): for all  $s \in W$ 

$$s \models x \Leftrightarrow s \in V(x)$$
  

$$s \models p \Leftrightarrow s \in V(p)$$
  

$$s \models \bot \Leftrightarrow \text{never}$$
  

$$s \models \neg \varphi \Leftrightarrow s \not\models \varphi$$
  

$$s \models \varphi \lor \psi \Leftrightarrow s \models \varphi \text{ or } s \models \psi$$
  

$$s \models \Box \varphi \Leftrightarrow \text{ for all } t \in W, \text{ if } sRt \text{ then } t \models \varphi$$

As a result

 $s \models \Diamond \varphi \Leftrightarrow$  there exists  $t \in W$  such that sRt and  $t \models \varphi$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions about modal logics

Relational semantics Global truth in a model :  $\varphi$  is globally true in model (W, R, V) if  $\blacktriangleright$  for all  $s \in W$ ,  $s \models \varphi$ Denotation :  $(W, R, V) \models \varphi$ 

Validity in a frame :  $\varphi$  is valid in frame (W, R) if

•  $\varphi$  is globally true in all relational models based on (W, R)Denotation :  $(W, R) \models \varphi$ 

Validity in a class of frames : φ is valid in a class C of frames if
φ is valid in all C-frames
Denotation : C ⊨ φ

Definitions about modal logics

#### Correspondence

For all frames (W, R), the following conditions correspond

| $(W,R) \models \Box x \to \Diamond x$                      | R is <b>serial</b>               |
|------------------------------------------------------------|----------------------------------|
| $(W,R) \models \Box x \to x$                               | <i>R</i> is <b>reflexive</b>     |
| $(W,R) \models x \to \Box \Diamond x$                      | R is symmetric                   |
| $(W,R) \models \Diamond x \to \Box x$                      | <i>R</i> is <b>deterministic</b> |
| $(W,R) \models \Box x \to \Box \Box x$                     | R is <b>transitive</b>           |
| $(W,R) \models \Diamond x \to \Box \Diamond x$             | <i>R</i> is <b>Euclidean</b>     |
| $(W,R) \models \Box(\Box x \to y) \lor \Box(\Box y \to x)$ | <i>R</i> is <b>linear</b>        |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions about modal logics

#### Completeness

#### The following sets of formulas are equal

| KD           | formulas valid in all serial frames        |
|--------------|--------------------------------------------|
| КТ           | formulas valid in all reflexive frames     |
| KB           | formulas valid in all symmetric frames     |
| $Alt_1$      | formulas valid in all deterministic frames |
| <b>K</b> 4   | formulas valid in all transitive frames    |
| <b>K</b> 5   | formulas valid in all Euclidean frames     |
| <b>S</b> 4   | formulas valid in all pre-orders           |
| <b>S</b> 5   | formulas valid in all partitions           |
| <b>S</b> 4.3 | formulas valid in all linear pre-orders    |

# Outline

#### Contents

- Definitions
- Boolean unification
- Unification types in modal logics and description logics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent advances

# Boolean unification

#### Boolean language

Formulas (arphi,  $\psi$ , ...) are constructed by means of

- Set VAR of propositional variables x, y, ...
- ▶ Set **PAR** of propositional parameters *p*, *q*, ...

• Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ 

Formal definition of the set  ${\mathcal L}$  of all formulas

 $\blacktriangleright \varphi ::= x \mid p \mid \bot \mid \neg \varphi \mid (\varphi \lor \psi)$ 

Abbreviations

•  $\top$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$  are defined as usual

# Boolean unification

## Proposition

#### Boolean unification is unitary

Every CPL-unifiable formula has a basis of unifiers of cardinality = 1

Boolean elementary unification is NP-complete

•  $\varphi(\bar{x})$  is **CPL**-unifiable  $\iff \varphi(\bar{x})$  is consistent

Boolean unification with parameters is  $\Pi_2^{\mathbf{P}}$ -complete

•  $\varphi(\bar{p}, \bar{x})$  is **CPL**-unifiable  $\iff \forall \bar{p} \exists \bar{x} \varphi(\bar{p}, \bar{x})$  is **QBF**-valid

#### References

- Martin, U., Nipkow, T.: Boolean unification the story so far. Journal of Symbolic Computation 7 (1989) 275–293.
- Baader, F. : On the complexity of Boolean unification. Information Processing Letters 67 (1998) 215–220.

# Boolean unification

#### **Projective substitutions**

► A substitution  $\epsilon : \mathcal{L}_X \longrightarrow \mathcal{L}_X$  is projective for a formula  $\varphi$ if  $\operatorname{var}(\varphi) = X$  and  $\varphi \vdash_{\mathsf{CPL}} \epsilon(x) \leftrightarrow x$  for each  $x \in \operatorname{var}(\varphi)$ 

#### **Projective formulas**

A formula is L-projective if it has a projective L-unifier

#### Lemma

Projective substitutions are closed under compositions

#### Proof

Suppose  $\sigma : \mathcal{L}_X \longrightarrow \mathcal{L}_X$  and  $\tau : \mathcal{L}_Y \longrightarrow \mathcal{L}_Y$  are such that

- $\operatorname{var}(\varphi) = X$
- $\blacktriangleright \ \varphi \vdash_{\mathsf{CPL}} \sigma(x) \leftrightarrow x \text{ for each } x \in \mathtt{var}(\varphi)$
- $var(\varphi) = Y$
- $\blacktriangleright \ \varphi \vdash_{\mathsf{CPL}} \tau(x) \leftrightarrow x \text{ for each } x \in \mathtt{var}(\varphi)$

Hence

•  $\varphi \vdash_{\mathsf{CPL}} \tau(\psi) \leftrightarrow \psi$  for each  $\psi \in \mathcal{L}_{\mathtt{var}(\varphi)}$ 

•  $\varphi \vdash_{\mathsf{CPL}} \tau(\sigma(x)) \leftrightarrow \sigma(x)$  for each  $x \in \operatorname{var}(\varphi)$ 

- $\varphi \vdash_{\mathsf{CPL}} \tau(\sigma(x)) \leftrightarrow x \text{ for each } x \in \operatorname{var}(\varphi)$
- $\varphi \vdash_{\mathsf{CPL}} (\tau \sigma)(x) \leftrightarrow x$  for each  $x \in \operatorname{var}(\varphi)$

#### Lemma

If a substitution is projective for  $\varphi$  then it is more general than any unifier of  $\varphi$ 

#### Proof

Suppose  $\epsilon : \mathcal{L}_X \longrightarrow \mathcal{L}_X$  and  $\tau : \mathcal{L}_X \longrightarrow \mathcal{L}_Y$  are such that

• 
$$var(\varphi) = X$$

- $\varphi \vdash_{\mathsf{CPL}} \epsilon(x) \leftrightarrow x$  for each  $x \in \operatorname{var}(\varphi)$
- τ(φ) is in CPL

Hence

- $\tau(\varphi) \vdash_{\mathsf{CPL}} \tau(\epsilon(x)) \leftrightarrow \tau(x)$  for each  $x \in \operatorname{var}(\varphi)$
- $\tau(\epsilon(x)) \leftrightarrow \tau(x)$  is in **CPL** for each  $x \in var(\varphi)$
- $(\tau \epsilon)(x) \leftrightarrow \tau(x)$  is in **CPL** for each  $x \in var(\varphi)$
- $\blacktriangleright \ \tau \epsilon \simeq_{\rm CPL} \tau$
- $\epsilon \preceq_{\mathsf{CPL}} \tau$

#### Lemma CPL-unifiable formulas are projective Proof: Consider a CPL-unifier $\sigma : \mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{var(\varphi)}$ of $\varphi$

- ► Let  $\epsilon : \mathcal{L}_{\operatorname{var}(\varphi)} \longrightarrow \mathcal{L}_{\operatorname{var}(\varphi)}$  be the substitution such that  $\epsilon(x) = (\varphi \land x) \lor (\neg \varphi \land \sigma(x))$  for each  $x \in \operatorname{var}(\varphi)$
- ► Remarks about *ϵ* 
  - $\varphi \vdash_{\mathsf{CPL}} \epsilon(x) \leftrightarrow x \text{ for each } x \in \operatorname{var}(\varphi)$
  - $\varphi \to (\epsilon(\psi) \leftrightarrow \psi)$  is in **CPL** for each  $\psi \in \mathcal{L}_{\operatorname{var}(\varphi)}$
  - $\neg \varphi \rightarrow (\epsilon(\psi) \leftrightarrow \sigma(\psi))$  is in **CPL** for each  $\psi \in \mathcal{L}_{var(\varphi)}$
- Hence
  - $\blacktriangleright~\epsilon$  is a projective substitution for  $\varphi$
  - $\varphi \to (\epsilon(\varphi) \leftrightarrow \varphi)$  and  $\varphi \to \epsilon(\varphi)$  are in **CPL**
  - $\neg \varphi \rightarrow (\epsilon(\varphi) \leftrightarrow \sigma(\varphi))$  and  $\neg \varphi \rightarrow \epsilon(\varphi)$  are in **CPL**

•  $\epsilon(\varphi)$  is in **CPL** 

#### Proposition

Boolean unification is unitary

#### $\mathsf{The} \to \mathsf{-fragment}: \mathsf{syntax}$

Formulas (arphi,  $\psi$ , ...) are constructed by means of

- Set VAR of propositional variables x, y, ...
- ▶ Set **PAR** of propositional parameters *p*, *q*, ...
- Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$

Formal definition of the set  $\mathcal{L}_{\rightarrow}$  of all formulas

 $\blacktriangleright \varphi ::= x \mid p \mid (\varphi \to \psi)$ 

Abbreviations

- ▶  $\top$  is defined by  $\top$  ::=  $x \to x$
- ▶  $\lor$  is defined by  $(\varphi \lor \psi)$  ::=  $((\varphi \to \psi) \to \psi)$

# $\label{eq:constraint} \begin{array}{l} \text{The} \rightarrow \text{-fragment}: \text{ some properties} \\ \text{Satisfiability/validity} \end{array}$

- $\blacktriangleright$  Every formula in  $\mathcal{L}_{\rightarrow}$  is satisfiable
- ▶ The validity problem for  $\mathcal{L}_{\rightarrow}$ -formulas is **coNP**-complete

Axiomatization : modus ponens +

- $\blacktriangleright (x \to (y \to z)) \to ((x \to y) \to (x \to z))$
- $x \to (y \to x)$

$$\blacktriangleright ((x \to y) \to x) \to x$$

Algebraic characterization : semi-Boolean algebras  $(A, \triangleright)$ 

$$\blacktriangleright (a \triangleright b) \triangleright a = a$$

$$\bullet \ a \triangleright (b \triangleright c) = (b \triangleright (a \triangleright c))$$

• 
$$(a \triangleright b) \triangleright b = (b \triangleright a) \triangleright a$$

 $\mathsf{The} \to \mathsf{-fragment}: \mathsf{unification}$ 

For all parameter-free formulas  $\varphi$  in  $\mathcal{L}_{\rightarrow}$ 

- $\varphi$  is satisfiable
- $\varphi$  is unifiable : a possible unifier of  $\varphi$  being
  - ▶ the substitution  $\sigma$  such that for all  $x \in var(\varphi)$ ,  $\sigma(x) = \top$
- $\varphi$  is projective : a possible projective unifier of  $\varphi$  being

▶ the substitution  $\epsilon$  such that for all  $x \in var(\varphi)$ ,  $\epsilon(x) = \varphi \rightarrow x$ As a result

 $\blacktriangleright$  elementary unification in the  $\mathcal{L}_{\rightarrow}\text{-}\mathsf{fragment}$  of CPL is unitary What is the type of

• unification with parameters in the  $\mathcal{L}_{\rightarrow}$ -fragment of **CPL** ?

#### Lemma

The unifiable formula  $x \rightarrow p \lor q$  is not unitary when  $p \neq q$ 

# Proof

- Suppose  $\tau$  :  $\mathcal{L}_{\{x\}} \longrightarrow \mathcal{L}_Y$  is a mgu of  $x \rightarrow p \lor q$
- Hence
  - $\tau(x) \rightarrow p \lor q$  is in **CPL**
  - either  $p \to \tau(x)$  is in **CPL**, or  $q \to \tau(x)$  is in **CPL**
- WLOG, suppose  $p \rightarrow \tau(x)$  is in **CPL**
- Let  $\sigma_q: \mathcal{L}_{\{x\}} \longrightarrow \mathcal{L}_{\emptyset}$  be such that  $\sigma_q(x) = q$
- Thus,  $\sigma_q$  is a unifier of  $x \rightarrow p \lor q$  and
  - $\tau \preceq_{\mathsf{CPL}} \sigma_q$
  - There exists  $\theta_q : \mathcal{L}_Y \longrightarrow \mathcal{L}_{\emptyset}$  such that  $\theta_q \tau \simeq_{CPL} \sigma_q$
  - $(\theta_q \tau)(x) \leftrightarrow \sigma_q(x)$  is in **CPL**
  - $\theta_q(\tau(x)) \leftrightarrow q$  is in **CPL**
  - $p \rightarrow \theta_q(\tau(x))$  is in **CPL**
  - $p \rightarrow q$  is in **CPL** : a contradiction !

Let  $\varphi$  in  $\mathcal{L}_{\rightarrow}$  and  $\sigma : \mathcal{L}_{\operatorname{var}(\varphi)} \longrightarrow \mathcal{L}_Y$  be a unifier of  $\varphi$ WLOG, suppose for all  $x \in \operatorname{var}(\varphi)$ ,  $\operatorname{par}(\sigma(x)) \subseteq \operatorname{par}(\varphi)$ 

#### Lemma

There exists a substitution  $\epsilon$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{var(\varphi)}$  such that

▶ for all  $x \in var(\varphi)$ ,  $par(\epsilon(x)) \subseteq par(\varphi)$ 

• for all 
$$n \in \mathbb{N}$$
,  $\epsilon^n \preceq_{CPL} \sigma$ 

▶ for all  $n \in \mathbb{N}$ , if  $n \ge \texttt{Card}(\texttt{var}(\varphi))$  then  $\epsilon^n$  is a unifier of  $\varphi$ 

#### Proposition

Unification with parameters in the  $\mathcal{L}_{\rightarrow}\mbox{-}\mathsf{fragment}$  of CPL is finitary

#### Reference

 B., P., Mojtahedi, M. : Unification with parameters in the implication fragment of classical propositional logic. Logic Journal of the IGPL 30 (2022) 454–464.

# Outline

#### Contents

- Definitions
- Boolean unification
- Unification types in modal logics and description logics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent advances

#### Propositional modal language

Formulas ( $\varphi$ ,  $\psi$ , . . .) are constructed by means of

- Set VAR of propositional variables x, y, ...
- ▶ Set **PAR** of propositional parameters *p*, *q*, ...
- ▶ Connectives  $\bot$ ,  $\top$ ,  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\Box$ ,  $\Diamond$ , ...

Formal definition of the set  $\mathcal{L}$  of all formulas

 $\blacktriangleright \varphi ::= x \mid p \mid \bot \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$ 

Abbreviations

- $\top$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$  are defined as usual
- $\diamond$  is defined by  $\diamond \varphi$  ::=  $\neg \Box \neg \varphi$

# Propositional modal logic

Set  $\boldsymbol{\mathsf{L}}$  of formulas closed under uniform substitution and such that

- 1. L contains all tautologies
- 2. L contains the distribution axiom :  $\Box(x \to y) \to (\Box x \to \Box y)$

- 3. L is closed under modus ponens :  $\frac{x \rightarrow y}{y}$
- 4. L is closed under generalization :  $\frac{x}{\Box x}$

#### Some computational results

#### Rybakov (1984, 1997)

The unification problem and the admissibility problem in "transitive" modal logics such as K4, S4, ... are decidable

#### Chagrov (1992)

There exists a decidable propositional modal logic with an undecidable admissibility problem

#### Wolter and Zakharyaschev (2008)

The unification problem and the admissibility problem for any propositional modal logic between K<sub>U</sub> and K4<sub>U</sub> are undecidable

#### Some computational results

There exists a decidable propositional modal logic with an NP-complete consistency problem and an undecidable admissibility problem : modal logic Alt<sub>1</sub> × Alt<sub>1</sub>

# Syntax of modal logic $\boldsymbol{Alt}_1\times\boldsymbol{Alt}_1$ Formulas

$$\blacktriangleright \varphi ::= x \mid \perp \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box_1 \varphi \mid \Box_2 \varphi$$

Abbreviations

- $\top$ ,  $\land$ ,  $\rightarrow$ ,  $\leftrightarrow$  are defined as usual
- $\Diamond_1$  is defined by  $\Diamond_1 \varphi ::= \neg \Box_1 \neg \varphi$
- $\Diamond_2$  is defined by  $\Diamond_2 \varphi ::= \neg \Box_2 \neg \varphi$

#### Some computational results

Axiomatization of modal logic  $\textbf{Alt}_1 \times \textbf{Alt}_1$ 

$$\blacktriangleright \ \Box_1(x \to y) \to (\Box_1 x \to \Box_1 y)$$

$$\blacktriangleright \ \Box_2(x \to y) \to (\Box_2 x \to \Box_2 y)$$

$$\frac{x \ x \to y}{y}$$

$$\blacktriangleright \frac{x}{\Box_1 x}$$

$$\sum_{n=1}^{\infty} \frac{x}{n}$$

- $\blacktriangleright \ \Diamond_1 x \to \Box_1 x$
- $\blacktriangleright \Diamond_2 x \to \Box_2 x$
- $\blacktriangleright \Box_1 \Box_2 x \leftrightarrow \Box_2 \Box_1 x$
- $\blacktriangleright \Diamond_1 \Box_2 x \to \Box_2 \Diamond_1 x$

Remark : Consistency problem in  $\textbf{Alt}_1 \times \textbf{Alt}_1$  is NP-complete

Proof: Small model property

# Some computational results

Remark : Admissibility problem in  $\textbf{Alt}_1 \times \textbf{Alt}_1$  is undecidable Proof:

- ► Consider the tiling problem defined by Lutz et al. (2007)
  - given a finite set ∆ of domino-types, binary relations V and H on ∆ and subsets ∆<sub>u</sub>, ∆<sub>d</sub>, ∆<sub>r</sub> and ∆<sub>l</sub> of ∆, determine whether there exists a triple (1, J, f) where I, J ≥ 1 and
    - $f : \{1, \ldots, I\} \times \{1, \ldots, J\} \longrightarrow \Delta$  such that
      - ▶ for all  $(i,j) \in \{1, ..., I-1\} \times \{1, ..., J\}$ ,  $(f(i,j), f(i+1,j)) \in V$ ,
      - for all  $(i,j) \in \{1, ..., I\} \times \{1, ..., J-1\}$ ,  $(f(i,j), f(i,j+1)) \in H$ ,
      - for all  $j \in \{1, \ldots, J\}$ ,  $f(I, j) \in \Delta_u$ ,
      - for all  $j \in \{1, \ldots, J\}$ ,  $f(1, j) \in \Delta_d$ ,
      - for all  $i \in \{1, \ldots, I\}$ ,  $f(i, J) \in \Delta_r$ ,
      - for all  $i \in \{1, \ldots, I\}$ ,  $f(i, 1) \in \Delta_I$ .

• Suppose  $\Delta = \{\delta_1, \dots, \delta_a\}$  and use the propositional variables  $x_1, \dots, x_a$  and  $y, z \dots$ 

(日) (同) (三) (三) (三) (○) (○)

Some computational results

**Proof:** 

Construct the following 12 formulas

$$\begin{array}{l} (\phi_1) \ \Box_2 \Box_1 \neg (x_b \land x_c) \text{ where } 1 \leq b, c \leq a \text{ and } b \neq c \\ (\phi_2) \ \Box_2 \Box_1 (x_b \rightarrow \Box_2 \bigvee \{x_c: (\delta_b, \delta_c) \in V\}) \text{ where } 1 \leq b \leq a \\ (\phi_3) \ \Box_2 \Box_1 (x_b \rightarrow \Box_1 \bigvee \{x_c: (\delta_b, \delta_c) \in H\}) \text{ where } 1 \leq b \leq a \\ (\phi_4) \ \Box_2 \Box_1 (y \land \Box_2 \bot \rightarrow \bigvee \{x_b: \delta_b \in \Delta_u\}) \\ (\phi_5) \ \Box_1 (y \land \neg z \rightarrow \Box_2 (z \rightarrow \bigvee \{x_b: \delta_b \in \Delta_d\})) \\ (\phi_6) \ \Box_2 \Box_1 (z \land \Box_1 \bot \rightarrow \bigvee \{x_b: \delta_b \in \Delta_r\}) \\ (\phi_7) \ \Box_2 (\neg y \land z \rightarrow \Box_1 (y \rightarrow \bigvee \{x_b: \delta_b \in \Delta_r\})) \\ (\phi_8) \ y \rightarrow \Box_2 y \land \Box_1 y \\ (\phi_9) \ z \rightarrow \Box_2 z \land \Box_1 z \\ (\phi_{10}) \ \neg y \rightarrow \Box_2 \neg y \\ (\phi_{11}) \ \neg z \rightarrow \Box_1 \neg z \\ (\phi_{12}) \ \neg (\neg y \land \delta_1 y \land \neg z \land \delta_2 z \land \Box_2 \Box_1 \bigvee \{x_b: 1 \leq b \leq a\}) \\ \end{array}$$

problem

#### Some computational results

The truth is that nothing is known about the computability of the unification problem for

- K (elementary unification)
- Alt<sub>1</sub>, DAlt<sub>1</sub>, KD, KT, KB, KDB, KTB (unification with parameters)

- Various multimodal logics
- Various hybrid logics
- Various description logics

#### Some computational results

Remark : Elementary unification is NP-complete for

- ▶ any modal logic L containing  $\Box x \rightarrow \Diamond x$  (i.e. L  $\supseteq$  KD)
- ▶ any modal logic L containing  $x \to \Box \Diamond x$  (i.e. L ⊇ KB)
- ▶ any modal logic L containing  $\Diamond x \rightarrow \Box \Diamond x$  (i.e. L ⊇ K5)

# B. and Tinchev (2016)

Elementary unification is in *PSPACE* for modal logic Alt<sub>1</sub>
 Jeřábek (2005, 2007, 2015, 2020)

- The admissibility problem is coNEXPTIME-complete for intuitionistic logic and transitive modal logics like K4, S4, ...
- Unification with parameters is coNEXPTIME-complete for modal logic S5

#### Examples of unifiable formulas with their types

#### Examples

- In S5 :  $\Box x \lor \Box \neg x$  is unitary
  - $\sigma(x) = \Box x$
- In IPL :  $x \lor \neg x$  is finitary

• 
$$\sigma_{\top}(x) = \top$$

- $\sigma_{\perp}(x) = \bot$
- In K4 :  $\Box x \lor \Box \neg x$  is finitary
  - $\sigma_{\top}(x) = \top$
  - $\sigma_{\perp}(x) = \perp$
- In  $\mathbf{K}$  :  $x \to \Box x$  is nullary
  - $\sigma_{\top}(x) = \top$
  - $\sigma_k(x) = \Box^{< k} x \land \Box \bot$  for each  $k \in \mathbb{N}$

No known example of a modal logic with an infinitary unifiable formula

Modal logic K4, i.e.  $K + \Box x \rightarrow \Box \Box x$ 

Syntax

- $\blacktriangleright \varphi ::= x \mid \perp \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$
- Abbreviations
  - $\blacktriangleright \Diamond \varphi ::= \neg \Box \neg \varphi$
  - $\blacktriangleright \ \Box^+ \varphi ::= \varphi \land \Box \varphi$

Proposition (Rybakov 1984, 1997) K4-unification is decidable

Proposition (Ghilardi 2000) K4-unification is finitary

**Ghilardi (2000) :** A formula  $\varphi(x_1, \ldots, x_n)$  is said to be **projective** if **there exists a substitution**  $\sigma$  such that

- 1.  $\sigma$  is a **K**4-unifier of  $\varphi$
- 2.  $\Box^+ \varphi \rightarrow (\mathbf{x}_i \leftrightarrow \sigma(\mathbf{x}_i)) \in \mathbf{K}4$  for each *i* such that  $1 \leq i \leq n$

**Wroński (1995) :** A formula  $\varphi(x_1, \ldots, x_n)$  is said to be **transparent** if **there exists a substitution**  $\sigma$  such that

- 1.  $\sigma$  is a K4-unifier of  $\varphi$
- 2. for all K4-unifiers  $\tau$  of  $\varphi$ ,  $\tau(\mathbf{x}_i) \leftrightarrow \tau(\sigma(\mathbf{x}_i)) \in \mathbf{K}4$  for each i such that  $1 \leq i \leq n$

A formula  $\varphi(x_1, \ldots, x_n)$  is said to be **projective** if **there exists a substitution**  $\sigma$  such that

1.  $\sigma$  is a **K**4-unifier of  $\varphi$ 

2.  $\Box^+ \varphi \rightarrow (\mathbf{x}_i \leftrightarrow \sigma(\mathbf{x}_i)) \in \mathbf{K}4$  for each *i* such that  $1 \leq i \leq n$ 

Remark: The following statements hold:

- ▶  $\square^+ \varphi \rightarrow (\psi \leftrightarrow \sigma(\psi)) \in \mathsf{K4}$  for each formula  $\psi(x_1, \dots, x_n)$
- Such  $\sigma$  is a most general K4-unifier for  $\varphi$
- The set of all substitutions satisfying condition 2 is closed under compositions

A formula  $\varphi(x_1, \ldots, x_n)$  is said to be **projective** if **there exists a substitution**  $\sigma$  such that

1.  $\sigma$  is a **K**4-unifier of  $\varphi$ 

2.  $\Box^+ \varphi \rightarrow (\mathbf{x}_i \leftrightarrow \sigma(\mathbf{x}_i)) \in \mathbf{K}4$  for each *i* such that  $1 \leq i \leq n$ 

For all  $A \subseteq \{1, \ldots, n\}$ , let  $\theta_{\varphi}^{A}$  be the substitution defined by

- $\theta_{\varphi}^{A}(\mathbf{x}_{i}) = \Box^{+}\varphi \wedge \mathbf{x}_{i}$  if  $i \notin A$
- $\theta_{\varphi}^{\mathcal{A}}(\mathbf{x}_{i}) = \Box^{+}\varphi \rightarrow \mathbf{x}_{i}$  if  $i \in \mathcal{A}$

#### **Remark:** The substitution $\theta_{\omega}^{A}$ satisfies condition 2

A formula  $\varphi(x_1, \ldots, x_n)$  is said to be **projective** if **there exists a substitution**  $\sigma$  such that

1.  $\sigma$  is a K4-unifier of  $\varphi$ 

2.  $\Box^+ \varphi \rightarrow (\mathbf{x}_i \leftrightarrow \sigma(\mathbf{x}_i)) \in \mathbf{K}4$  for each *i* such that  $1 \leq i \leq n$ 

For all  $A \subseteq \{1, \ldots, n\}$ , let  $\theta_{\varphi}^{A}$  be the substitution defined by

► 
$$\theta_{\varphi}^{\mathcal{A}}(\mathbf{x}_{i}) = \Box^{+}\varphi \rightarrow \mathbf{x}_{i}$$
 if  $i \in \mathcal{A}$ 

• 
$$\theta_{\varphi}^{A}(\mathbf{x}_{i}) = \Box^{+}\varphi \wedge \mathbf{x}_{i}$$
 if  $i \notin A$ 

Given an arbitrary enumeration  $A_1, \ldots, A_{2^n}$  of the subsets of  $\{1, \ldots, n\}$ , let  $\theta_{\varphi} = \theta_{\varphi}^{A_1} \circ \ldots \circ \theta_{\varphi}^{A_{2^n}}$ 

# Proposition

For all formulas  $\varphi(x_1, \ldots, x_n)$ , if  $d = depth(\varphi)$  and N is the number of non-d-bisimilar-equivalent relational models over  $x_1, \ldots, x_n$ , the following statements are equivalent :

- $\theta_{\varphi}^{2N}$  is a **K**4-unifier of  $\varphi$
- $\varphi$  is projective

#### Corollary

It is decidable to determine whether a given formula  $\varphi$  is projective

#### Lemma

For all formulas  $\varphi$  and for all substitutions  $\sigma$ , if  $\sigma(\varphi) \in \mathbf{K}4$  then

- There exists a formula  $\psi$ ,  $depth(\psi) \leq depth(\varphi)$ , such that
  - $\psi$  is projective
  - $\sigma$  is a K4-unifier of  $\psi$
  - $\blacktriangleright \ \Box^+\psi \to \varphi \in \mathbf{K4}$

# Proposition

K4-unification is finitary,

► For all formulas \u03c6(x<sub>1</sub>,...,x<sub>n</sub>), the cardinality of a basis of K4-unifiers is finite

# Reference

 Ghilardi, S. : Best solving modal equations. Annals of Pure and Applied Logic 102 (2000) 183–198.

# Intuitionistic propositional logic — IPL Ghilardi (1999) :

For every IPL-unifiable formula φ, one can find a finite number of projective formula ψ<sub>1</sub>,..., ψ<sub>n</sub> such that (i) for all k = 1...n, ψ<sub>k</sub> → φ is in IPL and (ii) every IPL-unifier for φ is also an IPL-unifier for one of the ψ<sub>1</sub>,..., ψ<sub>n</sub>

# Logic of Gödel and Dummett — LC LC is IPL + $(x \rightarrow y) \lor (y \rightarrow x)$ Wroński (2008) :

- In all extensions of LC, unifiable formulas have projective unifiers
- An intermediate logic L in which all unifiable formulas have projective unifiers must contain LC

#### Extensions of S4.3 S4.3 is S4 + $\Box(\Box x \rightarrow y) \lor \Box(\Box y \rightarrow x)$ Dzik and Wojtylak (2011) :

- In all extensions of S4.3, unifiable formulas have projective unifiers
- Extensions of S4 in which all unifiable formulas have projective unifiers must contain S4.3

#### Extensions of K4D1

```
K4D1 is K4 + \Box(\Box x \rightarrow y) \lor \Box(\Box y \rightarrow x)
Kost (2018) :
```

In all extensions of K4D1, unifiable formulas have projective unifiers

Extensions of K4 in which all unifiable formulas have projective unifiers must contain K4D1

#### Modal logic S5, i.e. $\mathbf{KT} + \Diamond x \rightarrow \Box \Diamond x$

Syntax

- $\blacktriangleright \varphi ::= x \mid \perp \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$
- Abbreviations
  - $\blacktriangleright \ \Diamond \varphi ::= \neg \Box \neg \varphi$

Proposition

S5-unification is decidable

Proposition

S5-unification is unitary

Lemma S5-unifiable formulas are S5-projective Proof: Consider an S5-unifier  $\sigma$  of  $\varphi$ 

- ► Let  $\epsilon$  be the substitution such that  $\epsilon(x) = (\Box \varphi \land x) \lor (\neg \Box \varphi \land \sigma(x))$
- Fact :  $\epsilon$  is a projective unifier of  $\varphi$

Proposition

S5 unification is unitary : every unifiable formula has a mgu

Remark about  $\epsilon$ 

• If  $\sigma$  is atom-free then  $\epsilon$  can be defined by

• 
$$\epsilon(\mathbf{x}) = \Box \varphi \wedge \mathbf{x}$$
 when  $\sigma(\mathbf{x}) = \bot$ 

•  $\epsilon(\mathbf{x}) = \Box \varphi \rightarrow \mathbf{x}$  when  $\sigma(\mathbf{x}) = \top$ 

#### Remark

The proofs that CPL and S5 are unitary are based on the fact that every unifiable formula is projective in these logics

It is true that

 if every L-unifiable formula has a projective unifier then L-unification is unitary

However

- ► S4.2Grz-unification is unitary (Ghilardi 2000)
- some S4.2Grz-unifiable formulas are not projective (Dzik 2006)

#### Modal logic K

- Syntax
  - $\blacktriangleright \varphi ::= x \mid \perp \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$
- Abbreviations

$$\diamond \varphi ::= \neg \Box \neg \varphi \diamond \Box^{< n} \varphi ::= \Box^0 \varphi \land \ldots \land \Box^{n-1} \varphi \text{ for each } n \in \mathbb{N}$$

Open question

Is K-unification decidable ?

#### Remark

K-unification is not unitary since

σ<sub>⊤</sub>(x) = ⊤ and σ<sub>⊥</sub>(x) = ⊥ constitute a basis of unifiers in K
of the formula □x ∨ □¬x

# Our aim Demonstrate that K-unification is nullary by studying the K-unifiers of

•  $x \to \Box x$ 

Consider the following substitutions

- $\sigma_n(x) = \Box^{< n} x \land \Box^n \bot$  for each  $n \in \mathbb{N}$
- $\sigma_{\top}(x) = \top$

Lemma

•  $\sigma_n$  is a K-unifier of  $x \to \Box x$  for each  $n \in \mathbb{N}$ 

•  $\sigma_{\top}$  is a K-unifier of  $x \to \Box x$ 

#### Our aim

Demonstrate that K-unification is nullary by studying the K-unifiers of

 $\blacktriangleright x \to \Box x$ 

Consider the following substitutions

- $\sigma_n(x) = \Box^{< n} x \land \Box^n \bot$  for each  $n \in \mathbb{N}$
- $\sigma_{\top}(x) = \top$

#### Lemma

For all **K**-unifiers  $\sigma$  of  $x \to \Box x$  and for all  $n \in \mathbb{N}$ ,  $\sigma \preceq_{\mathcal{K}} \sigma_n$  if and only if  $\sigma(x) \to \Box^n \bot \in \mathbf{K}$ 

#### Lemma

For all substitutions  $\sigma$ ,  $\sigma \preceq_K \sigma_{\top}$  if and only if  $\sigma(x) \in \mathbf{K}$ 

# Proposition

For all formulas  $\varphi$  and for all  $n \in \mathbb{N}$ , if  $depth(\varphi) \leq n$  then

• If  $\varphi \to \Box \varphi \in \mathbf{K}$  then either  $\varphi \to \Box^n \bot \in \mathbf{K}$ , or  $\varphi \in \mathbf{K}$ 

# Corollary

The following substitutions form a complete set of K-unifiers for the formula  $x \to \Box x$ 

- $\sigma_n(x) = \Box^{< n} x \land \Box^n \bot$  for each  $n \in \mathbb{N}$
- $\sigma_{\top}(x) = \top$

Corollary K-unification is nullary

# Reference

 Jeřábek, E. : Blending margins: the modal logic K has nullary unification type. Journal of Logic and Computation 25 (2015) 1231–1240.

#### Directed unification

**L** has directed unification if for all L-unifiable formulas  $\varphi$  and for all L-unifiers  $\sigma$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Y}$  and  $\tau$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Z}$  of  $\varphi$ , there exists an L-unifier  $\theta$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{T}$  of  $\varphi$  such that

- $\blacktriangleright \ \theta \preceq_{\mathsf{L}} \sigma$
- $\blacktriangleright \ \theta \preceq_{\mathsf{L}} \tau$

#### Lemma

If L has directed unification then either L is unitary, or L is nullary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extensions of  $\mathbf{K}4 = \mathbf{K} + \Box x \rightarrow \Box \Box x$ 

Define the abbreviations

$$\square^+ \varphi := (\square \varphi \land \varphi)$$

- $\blacktriangleright \Diamond^+ \varphi := (\Diamond \varphi \lor \varphi)$
- K4.2<sup>+</sup> is K4 +  $\Diamond^+ \Box^+ \varphi \rightarrow \Box^+ \Diamond^+ \varphi$
- An extension L of K4 has directed unification if and only if K4.2<sup>+</sup> ⊆ L

#### References

- Ghilardi, S., Sacchetti, L. : Filtering unification and most general unifiers in modal logic. Journal of Symbolic Logic 69 (2004) 879–906.
- ► Jeřábek, E. : Logics with directed unification. In : Algebra and Coalgebra meet Proof Theory, Utrecht, Netherlands (2013).

Extensions of  $\mathbf{K}5 = \mathbf{K} + \Diamond x \rightarrow \Box \Diamond x$ 

**Remark :** Every extension L of K5 has directed unification **Proof :** Consider an L-unifiable formula  $\varphi$ 

- ▶ Let  $\sigma$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Y}$  and  $\tau$  :  $\mathcal{L}_{var(\varphi)} \longrightarrow \mathcal{L}_{Z}$  be L-unifiers of  $\varphi$  and t be a new propositional variable
- ▶ Let  $\theta$  :  $\mathcal{L}_{\operatorname{var}(\varphi)} \longrightarrow \mathcal{L}_{Y \cup Z \cup \{t\}}$  be the substitution defined for all  $x \in \operatorname{var}(\varphi)$  by
  - $\bullet \ \theta(x) = ((\Box \Box t \land (t \lor \Diamond \top)) \land \sigma(x)) \lor ((\Diamond \Diamond \neg t \lor (\neg t \land \Box \bot)) \land \tau(x))$
- One can prove that
  - $\blacktriangleright \ \theta \preceq_{\mathsf{L}} \sigma$
  - $\blacktriangleright \ \theta \preceq_{\mathsf{L}} \tau$
  - $\theta(\varphi)$  is in L

#### Reference

Alizadeh, M., Ardeshir, M., B., P., Mojtahedi, M.: Unification types in Euclidean modal logics. Logic Journal of the IGPL (to appear).

Description language  $\mathcal{FL}_0$ 

The set of all concepts is defined by

 $\bullet C ::= X \mid A \mid \top \mid (C \sqcap D) \mid \forall R.C$ 

Two concept descriptions C, D are equivalent ( $C \equiv D$ ) if

•  $C \leftrightarrow D$  is valid in the class of all frames

Proposition Equivalence of  $\mathcal{FL}_0\text{-concepts}$  can be decided in polynomial time

#### Reference

 Levesque, H., Brachman, R. : Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence 3 (1987) 78–93.

#### Description language $\mathcal{FL}_0$

The substitution  $\sigma$  unifies the concept descriptions C and D if

•  $\sigma(C) \equiv \sigma(D)$ 

C and D are  $\mathcal{FL}_0$ -unifiable if they have a unifier

#### **Example** The substitution $\sigma$ defined by

- $\sigma(X) = A \sqcap \forall S.A$
- $\bullet \ \sigma(\mathbf{Y}) = \forall \mathbf{R}.\mathbf{A}$
- is a unifier of the  $\mathcal{FL}_0\text{-}\mathsf{concept}$  descriptions
  - $\blacktriangleright C = \forall R. \forall R. A \sqcap \forall R. X$
  - $\blacktriangleright D = \mathbf{Y} \sqcap \forall R. \mathbf{Y} \sqcap \forall R. \forall S. A$

### Description language $\mathcal{FL}_0$

#### Proposition

- Unification in idempotent Abelian monoids with homomorphism is nullary
- $\mathcal{FL}_0$  is nullary try to unify  $\forall R.X \sqcap \forall R.Y$  and  $Y \sqcap \forall R.\forall R.Z$

#### Proposition

 Solvability of unification problems in *FL*<sub>0</sub> can be decided in deterministic exponential time

### References

- Baader, F.: Unification in commutative theories. Journal of Symbolic Computation 8 (1989) 479–497.
- Baader, F., Narendran, P. : Unification of concept terms in description logics. Journal of Symbolic Computation 31 (2001) 277–305.

Description language  $\mathcal{EL}$ 

Syntax of the description language  $\mathcal{EL}$ 

 $\bullet C ::= X \mid A \mid \top \mid (C \sqcap D) \mid \exists R.C$ 

Two concept descriptions C, D are equivalent ( $C \equiv D$ ) if

•  $C \leftrightarrow D$  is valid in the class of all frames

**Proposition** Equivalence of  $\mathcal{EL}$ -concept descriptions can be decided in polynomial time

#### Reference

Baader, F., Molitor, R., Tobies, S. : Tractable and decidable fragments of conceptual graphs. In Tepfenhart, W., Cyre, W. (editors) : Conceptual Structures: Standards and Practices. Springer (1999) 480–493.

#### Description language $\mathcal{EL}$

The substitution  $\sigma$  unifies the concept descriptions C and D if

•  $\sigma(C) \equiv \sigma(D)$ 

C and D are  $\mathcal{EL}$ -unifiable if they have a unifier

#### **Example** The substitution $\sigma$ defined by

- $\sigma(X) = \top$
- *σ*(*Y*) = *Y*

is a unifier of the  $\mathcal{EL}\text{-}\mathsf{concept}$  descriptions

- $\blacktriangleright C = X \sqcap \exists R. Y$
- $\blacktriangleright D = \exists R. Y$

Description language  $\mathcal{EL}$ 

Proposition

- ► Unification in *EL* is NP-complete
- $\mathcal{EL}$  is nullary try to unify  $X \sqcap \exists R.Y$  and  $\exists R.Y$

Proposition

• Unification in  $\mathcal{EL}^{-\top}$  is **PSPACE-complete** 

#### References

- Baader, F., Binh, N., Borgwardt, S., Morawska, B. : Unification in the description logic EL without the top concept. In Bjørner, N., Sofronie-Stokkermans, V. (editors) : Automated Deduction — CADE 23. Springer (2011) 70–84.
- ▶ Baader, F., Morawska, B. : Unification in the description logic *EL*. In Treinen, R. (editor) : Rewriting Techniques and Applications. Springer (2009) 350–364.

# Outline

#### Contents

- Definitions
- Boolean unification
- Unification types in modal logics and description logics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent advances

Restricted unification in the description logics  $\mathcal{FL}_0$  and  $\mathcal{EL}$ 

#### Proposition

- $\mathcal{FL}_0$  with restriction on role depth is finitary
- ► *EL* with restriction on role depth is nullary

#### References

- Baader, F., Fernández Gil, O., Rostamigiv, M. : Restricted unification in the DL FL<sub>0</sub>. In: Frontiers of Combining Systems. Springer (2021) 81–97.
- ▶ Baader, F., Rostamigiv, M. : *Restricted unification in the DL EL*. In: Proceedings of the 34th International Workshop on Description Logics. CEUR (2021) paper 4.

Elementary unification in  $\mathbf{K} + \Box^n \bot$  and  $\mathbf{Alt}_1 + \Box^n \bot$  for  $n \ge 2$ **Proposition :** For all  $n \ge 2$ 

- $\mathbf{K} + \Box^n \bot$  is not unitary for elementary unification
- ► Alt<sub>1</sub> + □<sup>n</sup>⊥ is either unitary, or nullary for elementary unification
- **Proof** : Case when n = 2
  - For K + □<sup>2</sup>⊥, consider the formula □x ∨ □¬x and show that the substitutions σ<sub>T</sub>(x) = ◊⊤ ∧ x and σ<sub>⊥</sub>(x) = □⊥ ∨ x constitute a basis of unifiers

For Alt<sub>1</sub> + □<sup>2</sup>⊥, show that Alt<sub>1</sub> + □<sup>n</sup>⊥ is directed for elementary unification

Elementary unification in  $\mathbf{K} + \Box^n \bot$  and  $\mathbf{Alt}_1 + \Box^n \bot$  for  $n \ge 2$ 

Let  $\varphi$  be unifiable and  $\sigma$  :  $\mathcal{L}_{\operatorname{var}(\varphi)} \longrightarrow \mathcal{L}_Y$  be a unifier of  $\varphi$ 

- ▶ Lemma : There exists an unifier  $\tau : \mathcal{L}_{\operatorname{var}(\varphi)} \longrightarrow \mathcal{L}_{\operatorname{var}(\varphi)}$  of  $\varphi$  such that  $\tau \preceq \sigma$
- ► Proposition : Elementary unification in K + □<sup>n</sup>⊥ and Alt<sub>1</sub> + □<sup>n</sup>⊥ is either unitary, or finitary
- ► Corollary : Elementary unification in K + □<sup>n</sup>⊥ is finitary and elementary unification in Alt<sub>1</sub> + □<sup>n</sup>⊥ is unitary

#### References

- B., P., Gencer, Ç. Rostamigiv, M., Tinchev, T. : About the unification type of K + □□⊥. Annals of Mathematics and Artificial Intelligence 90 (2022) 481–497.
- B., P., Gencer, Ç. Rostamigiv, M., Tinchev, T.: Remarks about the unification types of some locally tabular normal modal logics. Logic Journal of the IGPL (to appear).

Extensions of  $\mathbf{K}5 = \mathbf{K} + \Diamond x \rightarrow \Box \Diamond x$ 

#### Proposition (elementary unification)

- Extensions of  $K45 = K5 + \Box x \rightarrow \Box \Box x$  are projective
- ► K5 and KD5 are unitary

#### Open question

Are all extensions of K5 unitary for elementary unification ?

#### References

- Alizadeh, M., Ardeshir, M., B., P., Mojtahedi, M. : Unification types in Euclidean modal logics. Logic Journal of the IGPL (to appear).
- ► Kost, S. : Projective unification in transitive modal logics. Logic Journal of the IGPL 26 (2018) 548–566.

 $\mathbf{K}\mathbf{D} \;=\; \mathbf{K} + \Diamond \top$ 

Proposition **KD** is nullary for unification with parameters

• 
$$(x \to p) \land (x \to \Box (p \to x))$$

#### Open questions

Type of **KD** for elementary unification ? Decidability of unification with parameters in **KD** ?

#### Reference

 B., P., Gencer, Ç. : KD is nullary. Journal of Applied Non-Classical Logics 27 (2018) 196–205.

$$\mathbf{KT} = \mathbf{K} + \Box x \to x$$

#### Proposition

**KT** is nullary for unification with parameters

►  $(x \to p) \land (x \to \Box(q \to y)) \land (y \to q) \land (y \to \Box(p \to x))$ 

#### Open questions

Type of **KT** for elementary unification ? Decidability of unification with parameters in **KT** ?

#### Reference

 B., P. : Remarks about the unification type of several non-symmetric non-transitive modal logics. Logic Journal of the IGPL 27 (2019) 639–658.

$$\mathsf{KB} = \mathsf{K} + x \to \Box \Diamond x$$

#### Proposition

**KB** is nullary for unification with parameters

 $\blacktriangleright \ x \to (\neg p \land \neg q \to \Box (p \land \neg q \to \Box (\neg p \land q \to \Box (\neg p \land \neg q \to x))))$ 

#### Open questions

Type of **KB** for elementary unification ? Decidability of unification with parameters in **KB** ?

#### Reference

 B., P., Gencer, Ç. : About the unification type of modal logics between KB and KTB. Studia Logica 108 (2020) 941–966.

 $\mathsf{Alt}_1 = \mathsf{K} + \Diamond x \to \Box x$ 

Proposition

- Alt<sub>1</sub> is nullary try to unify  $x \to \Box x$
- The elementary unification problem (without parameters) in Alt<sub>1</sub> is decidable (in PSPACE)

Open question

Decidability of unification with parameters in Alt1 ?

Reference

 B., P., Tinchev, T.: Unification in modal logic Alt<sub>1</sub>. In Beklemishev, L., Demri, S., Máté, A. (editors) : Advances in Modal Logic. Volume 11. College Publications (2016) 117–134.

# Conclusion

Some open problems

#### **Decidability of**

- elementary unification in modal logic K ?
- unification with parameters in modal logic KB ? in modal logics KD, KDB ? in modal logics KT, KTB ? in modal logic Alt<sub>1</sub> ?
- unification in the implicative fragment of modal logics ?

unification in the positive fragment of modal logics ?

#### Exact complexity of

unification in Alt<sub>1</sub>, K4, S4, ...

# Conclusion

Some open problems

#### Type of

- ► KB, KD, KDB, KT, KTB for elementary unification ?
- fusions of modal logics ? Products of modal logics ?
- non-transitive extensions of K5 and other locally tabular modal logics ?
- unification in the implicative fragment of modal logics ?

unification in the positive fragment of modal logics ?

# Thank you !

- ALIZADEH, M., M. ARDESHIR,, P. BALBIANI, and M. MOJTAHEDI, 'Unification types in Euclidean modal logics', Logic Journal of the IGPL (to appear).
- ANANTHARAMAN, S., P. NARENDRAN, and M. RUSINOWITCH, 'Unification modulo ACUI plus distributivity axioms', *Journal of Automated Reasoning* 33:1–28, 2004.
- BAADER, F., 'Unification in commutative theories', Journal of Symbolic Computation 8 (1989) 479–497.
- BAADER, F., 'On the complexity of Boolean unification', Information Processing Letters 67 (1998) 215–220.
- BAADER, F., N. BINH, S. BORGWARDT, and B. MORAWSKA, 'Unification in the description logic *EL* without the top concept', In: *Automated Deduction* — *CADE 23*, Springer (2011) 70–84.

- BAADER, F., O. FERNÁNDEZ GIL and M. ROSTAMIGIV, 'Restricted unification in the DL *FL*<sub>0</sub>', In: *Frontiers of Combining Systems*, Springer (2021) 81–97.
- BAADER, F., and S. GHILARDI, 'Unification in modal and description logics', *Logic Journal of the IGPL* 19 (2011) 705–730.
- BAADER, F., and R. KÜSTERS, 'Unification in a description logic with transitive closure of roles', In: Logic for Programming and Automated Reasoning, Springer (2001) 217–232.
- BAADER, F., and R. KÜSTERS, 'Nonstandard inferences in description logics: the story so far', In: *Mathematical Problems from Applied Logic I*, Springer (2006) 1–76.
- BAADER, F., R. MOLITOR, and S. TOBIES, 'Tractable and decidable fragments of conceptual graphs', In: Conceptual Structures: Standards and Practices, Springer (1999) 480–493.

- BAADER, F., and B. MORAWSKA, 'Unification in the description logic *EL*', In: *Rewriting Techniques and Applications*, Springer (2009) 350–364.
- BAADER, F., and B. MORAWSKA, 'SAT encoding of unification in *EL*', In: Logic for Programming, Artificial Intelligence, and Reasoning, Springer (2010) 97–111.
- BAADER, F., and P. NARENDRAN, 'Unification of concept terms in description logics', *Journal of Symbolic Computation* 31 (2001) 277–305.
- BAADER, F., and M. ROSTAMIGIV, 'Restricted unification in the DL *EL*', In: *Proceedings of the 34th International Workshop on Description Logics*, CEUR (2021) paper 4.
- BAADER, F., and W. SNYDER, 'Unification theory', In: Handbook of Automated Reasoning, Elsevier (2001) 439–526.

- BABENYSHEV, S., and V. RYBAKOV, 'Linear temporal logic LTL: basis for admissible rules', *Journal of and Computation* 21 (2010) 157–177.
- BABENYSHEV, S., and V. RYBAKOV, 'Unification in linear temporal logic LTL', Annals of Pure and Applied Logic 162 (2011) 991–1000.
- BABENYSHEV, S., V. RYBAKOV, R. SCHMIDT, and D. TISHKOVSKY, 'A tableau method for checking rule admissibility in S4', *Electronic Notes in Theoretical Computer Science* 262 (2010) 17–32.
- BALBIANI, P., 'Remarks about the unification type of several non-symmetric non-transitive modal logics', *Logic Journal of the IGPL* 27 (2019) 639–658.
- ▶ BALBIANI, P., and Ç. GENCER, 'KD is nullary', Journal of Applied Non-Classical Logics 27 (2017) 196–205.

- BALBIANI, P., and Ç. GENCER, 'Unification in epistemic logics', *Journal of Applied Non-Classical Logics* 27 (2017) 91–105.
- BALBIANI, P., and Ç. GENCER, 'About the unification type of modal logics between KB and KTB', *Studia Logica* 108 (2020) 941–966.
- ► BALBIANI, P., Ç. GENCER, M. ROSTAMIGIV, and T. TINCHEV, 'About the unification type of K + □□⊥', Annals of Mathematics and Artificial Intelligence 90 (2022) 481–497.
- BALBIANI, P., Ç. GENCER, M. ROSTAMIGIV, and T. TINCHEV, 'Remarks about the unification types of some locally tabular normal modal logics', *Logic Journal of the IGPL* (to appear).
- BALBIANI, P., and M. MOJTAHEDI, 'Unification with parameters in the implication fragment of Classical Propositional Logic', *Logic Journal of the IGPL* **30** (2022) 454–464.

- BALBIANI, P., and T. TINCHEV, 'Unification in modal logic
   Alt<sub>1</sub>', In: Advances in Modal Logic, College Publications (2016) 117–134.
- BALBIANI, P., and T. TINCHEV, 'Elementary unification in modal logic KD45', Journal of Applied Logics 5 (2018) 301–317.
- BEZHANISHVILI, N., and D. DE JONGH, Extendible formulas in two variables in intuitionistic logic, Studia Logica 100 (2012) 61–89.
- BLACKBURN, P., M. DE RIJKE, and Y. VENEMA, Modal Logic, Cambridge University Press (2001).
- BÜTTNER, W., and H. SIMONIS, 'Embedding Boolean expressions into logic programming', *Journal of Symbolic Computation* 4 (1987) 191–205.

- CHAGROV, A., 'Decidable modal logic with undecidable admissibility problem', *Algebra and Logic* **31** (1992) 83–93.
- CHAGROV, A., and M. ZAKHARYASCHEV, Modal Logic, Oxford University Press (1997).
- CINTULA, P., and G. METCALFE, 'Admissible rules in the implication-negation fragment of intuitionistic logic', Annals of Pure and Applied Logic 162 (2010) 162–171.
- DZIK, W., 'Unitary unification of S5 modal logics and its extensions', Bulletin of the Section of Logic 32 (2003) 19–26.
- DZIK, W., 'Transparent unifiers in modal logics with self-conjugate operators', *Bulletin of the Section of Logic* 35 (2006) 73-83.

- DZIK, W., Unification Types in Logic, Wydawnicto Uniwersytetu Slaskiego (2007).
- DZIK, W., 'Unification and slices in intermediate and in some modal logics', In: *Topology, Algebra and Categories in Logic,* Amsterdam, Netherlands (2009).
- DZIK, W., 'Remarks on projective unifiers', Bulletin of the Section of Logic 40 (2011) 37–46.
- DZIK, W., S., KOST, and P. WOJTYLAK, 'Finitary unification in locally tabular modal logics characterized', Annals of Pure and Applied Logic (to appear).
- DZIK, W., and P. WOJTYLAK, 'Projective unification in modal logic', Logic Journal of the IGPL 20 (2012) 121–153.

- DZIK, W., and P. WOJTYLAK, 'Modal consequence relations extending S4.3: an application of projective unification', *Notre Dame Journal of Formal Logic* 57 (2013) 523–549.
- FERNÁNDEZ GIL, O., Hybrid Unification in the Description Logic EL, Master Thesis of Technische Universität Dresden (2012).
- GENCER, Ç., and D. DE JONGH, 'Unifiability in extensions of K4', Logic Journal of the IGPL 17 (2009) 159–172.
- GHILARDI, S., 'Unification through projectivity', Journal of Logic and Computation 7 (1997) 733–752.
- GHILARDI, S., 'Unification in intuitionistic logic', Journal of Symbolic Logic 64 (1999) 859–880.

- GHILARDI, S., 'Best solving modal equations', Annals of Pure and Applied Logic 102 (2000) 183–198.
- GHILARDI, S., and L. SACCHETTI, 'Filtering unification and most general unifiers in modal logic', *Journal of Symbolic Logic* 69 (2004) 879–906.
- IEMHOFF, R., 'On the admissible rules of intuitionistic propositional logic', *Journal of Symbolic Computation* 66 (2001) 281–294.
- IEMHOFF, R., 'A syntactic approach to unification in transitive reflexive modal logics', Notre Dame Journal of Formal Logic 57 (2016) 233-247.
- IEMHOFF, R., and G. METCALFE, 'Proof theory for admissible rules', Annals of Pure and Applied Logic 159 (2009) 171–186.

- JEŘÁBEK, E., 'Complexity of admissible rules', Archive for Mathematical Logic 46 (2007) 73–92.
- JEŘÁBEK, E., 'Logics with directed unification', In: Algebra and Coalgebra meet Proof Theory, Utrecht, Netherlands (2013).
- JERÁBEK, E., 'Blending margins: the modal logic K has nullary unification type', *Journal of Logic and Computation* 25 (2015) 1231–1240.
- KNUTH, D., and P. BENDIX, 'Simple word problems in universal algebras', In: Computational Problems in Abstract Algebra, Pergamon Press (1970) 263–297.
- KOST, S., 'Projective unification in transitive modal logics', Logic Journal of the IGPL 26 (2018) 548–566.

- LEVESQUE, H., and R. BRACHMAN, 'Expressiveness and tractability in knowledge representation and reasoning', *Computational Intelligence* 3 (1987) 78–93.
- LÖWENHEIM, L., 'Über das Auflösungsproblem im logischen Klassenkalkül', Sitzungsberichte der Berliner mathematischen Gesellschaft 7 (1908) 89–94.
- LUTZ, C., D. WALTHER, and F. WOLTER, 'Conservative extensions in expressive description logics', In: IJCAI'07: Proceedings of the 20th international joint conference on Artifical intelligence, Morgan Kaufmann (2007) 453–458.
- MARTIN, U., T. NIPKOW, 'Unification in Boolean rings', Journal of Automated Reasoning 4 (1988) 381–396.
- MARTIN, U., and T. NIPKOW, 'Boolean unification the story so far', *Journal of Symbolic Computation* 7 (1989) 275–293.
- PRUCNAL, T., 'On the structural completeness of some pure implicational propositional calculi', *Studia Logica* **30** (1972) 45–50.

- ROBINSON, J., 'A machine oriented logic based on the resolution principle', *Journal of the ACM* 12 (1965) 23–41.
- ROSTAMIGIV, M., About the Type of Modal Logics for the Unification Problem, Doctoral thesis of the University of Toulouse 3 (2020).
- RUDEANU, S., Boolean Functions and Equations, Elsevier (1974).
- RYBAKOV, V., 'Admissible rules for pretable modal logics', Algebra and Logic 20 (1981) 440–464
- RYBAKOV, V., 'A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23 (1984) 369–384.

- RYBAKOV, V., 'Bases of admissible rules of the logics S4 and Int', Algebra and Logic 24 (1985) 55–68.
- RYBAKOV, V., Admissibility of Logical Inference Rules, Elsevier (1997).
- RYBAKOV, V., 'Construction of an explicit basis for rules admissible in modal system S4', *Mathematical Logic Quarterly* 47 (2001) 441–446.
- RYBAKOV, V., 'Linear temporal logic with until and next, logical consecutions', Annals of Pure and Applied Logic 155 (2008) 32–45.
- RYBAKOV, V., M. TERZILER, and Ç. GENCER, 'An essay on unification and inference rules for modal logics', *Bulletin of the Section of Logic* 28 (1999) 145–157.

- RYBAKOV, V., M. TERZILER, and Ç. GENCER, 'An essay on unification and inference rules for modal logics', *Bulletin of the Section of Logic* 28 (1999) 145–157.
- SIEKMANN, J., 'Unification theory', Journal of Symbolic Computation 7 (1989) 207–274.
- SOFRONIE-STOKKERMANS, V., 'Locality and subsumption testing in *EL* and some of its extensions', In: *Advances in Modal Logic. Volume 7*, College Publications (2008) 315–339.
- WOLTER, F., and M. ZAKHARYASCHEV, 'Undecidability of the unification and admissibility problems for modal and description logics', ACM Transactions on Computational Logic 9:25:1–25:20, 2008.
- WROŃSKI, A., 'Transparent unification problem', *Reports on Mathematical Logic* 29 (1995) 105–107.

- WROŃSKI, A., 'Unitary unification for equivalential algebras and other structures related to logic', In: 11th International Congress of Logic, Methodology and Philosophy of Science, Cracow, Poland (1999).
- WROŃSKI, A., 'Transparent verifiers in intermediate logics', In: 54th Conference in History of Mathematics, Cracow, Poland (2008).