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Erdős–Rényi random graph G(n,p)
● Definition of G(n,p): n , ∈ℕ p [0,1]; vertex set {1,…,∈ n}, 

make each pair of vertices an edge with probability p.

● Introduced by Gilbert 1958, Erdős–Rényi 1959.

● Usually, exciting things happen when p=p(n) tends to 0

– Giant component: p = const / n.

– Hamiltonicity: p = const * log n / n.



  

Erdős–Rényi random graph G(n,p)
● Definition of G(n,p): n , ∈ℕ p [0,1]; vertex set {1,…,∈ n}, 

make each pair of vertices an edge with probability p.

● Theorem [Gilbert 1958, Erdős–Rényi 1959]: Let ε>0 be fixed.

– If p(n)>(1+ε)ln n / n, then G(n,p) is asymptotically almost surely 
connected.

– If p(n)<(1-ε)ln n / n, then G(n,p) a. a. s. contains an isolated vertex. In 
particular, it is disconnected.

● Theorem [Grimmett-McDiarmid 1975, Matula 1976]: Let ε>0 and 
p (0,1) be fixed. The clique number a.a.s. satisfies∈

ω(G(n,p))=(2 ± ε)ln n / ln(1/p).
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make each pair of vertices an edge with probability p.

● Theorem [Gilbert 1958, Erdős–Rényi 1959]: Let ε>0 be fixed.

– If p(n)>(1+ε)ln n / n, then G(n,p) is asymptotically almost surely 
connected.

– If p(n)<(1-ε)ln n / n, then G(n,p) a. a. s. contains an isolated vertex. In 
particular, it is disconnected.

● Theorem [Grimmett-McDiarmid 1975, Matula 1976]: Let ε>0 and 
p (0,1) be fixed. The clique number a.a.s. satisfies∈

ω(G(n,p))=(2 ± ε)ln n / ln(1/p).

Lower bound for diagonal 
Ramsey numbers R(k,k)>(√2)k.



  

Graphon based random graphs
● Definition of graphon: W:[0,1]2→[0,1] measurable, symmetric W(x,y)=W(y,x)

● Definition of G(n,W): Vertex set {1,…,n}

– Generate x1, x2, …,xn  [0,1] at random.∈

– For each pair {i,j}, insert it as an edge with probability W(xi, xj)=W(xj, xi).

● Introduced by Lovász and Szegedy 2006
”Every graphon can be approximated by finite graphs.”
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Stochastic block model
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G(n,W) is typically dense 
(and thus boring???)
● W≡0, or
● W≠0 and then a.a.s.

e(G(n,W))=(0.5±ε) W∥ ∥1 n2



  

Connectivity of G(n,W)
● Theorem [Gilbert 1958, Erdős–Rényi 1959]: Let ε>0 be fixed.

– If p(n)>(1+ε)ln n / n, then G(n,p) is asymptotically almost surely 
connected.

– If p(n)<(1-ε)ln n / n, then G(n,p) a. a. s. contains an isolated vertex. In 
particular, it is disconnected.



  

Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W

Definition: W is disconnected if there exists a partition [0,1]=R∪B 
 into two sets of positive measure such that W is zero on R×B.

R BB

R
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Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W



  

Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W
● Second Obstacle: Isolated vertices

W(x,y)=x6y6



  

Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W
● Second Obstacle: Isolated vertices

W(x,y)=x6y6

The left-most point min{xi} ~ 1 / n < 1/√n 

Hence, W(xi,y)<n-3 for every y.

There are n-1 people and each of them becomes your 
friend with probability <n-3. 😞



  

Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W
● Second Obstacle: Isolated vertices

W(x,y)=x6y6

The left-most point min{xi} ~ 1 / n < 1/√n 

Hence, W(xi,y)<n-3 for every y.

There are n-1 people and each of them becomes your 
friend with probability <n-3. 😞

For x [0,1], deg(x)=∈ ∫ W(x,y) dy



  

Connectivity of G(n,W)
● First Obstacle: Disconnectedness of W
● Second Obstacle: Isolated vertices

W(x,y)=x6y6

The left-most point min{xi} ~ 1 / n < 1/√n 

Hence, W(xi,y)<n-3 for every y.

There are n-1 people and each of them becomes your 
friend with probability <n-3. 😞

What about W(x,y)=xfyf for f (0,∞)?∈
transition at f=1



  

Connectivity of G(n,W)

Theorem [H.-Viswanathan]
Suppose that W is a graphon.

– If W is disconnected (as a graphon) then G(n,W) is 
disconnected (as a graph) a.a.s.

– If W is connected then for α [0,1], write s(α) [0,1] for the measure of ∈ ∈
elements x with deg(x)<α.

● If limα→0  s(α) / α = 0 then a.a.s. G(n,W) is connected.

● If limα→0  s(α) / α = ∞ then a.a.s. G(n,W) has an isolated vertex.

● If limα→0  s(α) / α  (0,∞) then connected AND disconnected with prob>0.∈



  

Clique number of G(n,W)
● Theorem [Grimmett-McDiarmid 1975, Matula 1976]: Let ε>0 and p (0,1) ∈

be fixed. The clique number a.a.s. satisfies

ω(G(n,p))=(2 ± ε)ln n / ln(1/p).

● Hence: Suppose that W is a graphon so that 0.01 ≤ W(x,y) ≤ 0.99. Then
G(n,0.01)  ⊆G(n,W)  ⊆G(n,0.99)   (stochastic domination)

and so, a.a.s. 
(2 ± ε)ln n / ln(1/0.01) ≤ ω(G(n,W)) ≤ (2 ± ε)ln n / ln(1/0.99)

● Goal: find CW  (0,∞) such that ω(∈ G(n,W))=(CW ± ε) ln n



  

Clique number of G(n,W)
● Calculations in the Erdős–Rényi case G(n,p). (only 1st moment)

(a) k = c ln n, c  (0,∞) to be chosen later∈

(b) Random variable X counts cliques of size k 

(c)
X =(n

k ) p
(k

2)≈nc ln (n ) p(c2 ln (n )2/2 )=exp (c ln (n )2+ ln ( p )c2 ln (n )2/2)E
∞

0

1+ ln ( p )c /2

>0

<0?



  

Clique number of G(n,W)
● A graphon with two steps.

(a) k = (c1+c2)ln n, later maximize c1+c2

(b) Random variable X counts cliques with ciln n vertices in i-th block 

(c)
X =( 0.7 n

c1 ln n)( p11)
(c1 ln (n )

2 )
×( 0.3 n

c2 ln n)( p22)
(c2 ln (n )

2 )
×( p12)(c1 ln (n )c2 ln (n ))E

0.3

0.7 p11 p12

p12 p22

∞

0

c1+c2+
1
2 ((c1)2 ln ( p11)+(c2)2 ln ( p22)+2c1 c2 ln ( p12))

>0

<0



  

Clique number of G(n,W)

(a) k = (c1+c2)ln n,         maximize c1+c2

c1+c2+
1
2 ((c1)2 ln ( p11)+(c2)2 ln ( p22)+2c1 c2 ln ( p12)) >0

entropy energy



  

Clique number of G(n,W)

Theorem [Doležal, H., Máthé]
Suppose that W is a graphon. We have 

ω(G(n,W))=(CW ± ε)ln n.

where 
CW = supf ∫ f(x) dx 

and the supremum ranges over all functions f:[0,1]→[0,∞) such that

∫ x
f ( x )dx +

1
2

∫ x ∫ y
f ( x ) f ( y ) ln (W ( x , y ))dy dx >0

entropy energy
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