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500 THE $-ADIC NUMBERS OF HENSEL [October,

THE p-ADIC NUMBERS OF HENSEL*
C. C. MacDUFFEE, University of Wisconsin

1. Introduction. One cannot blame a respectable mathematician for looking
twice at the equation

—1=44454+4544.554...,

However, if we add 1 to both sides of this equation, we have
0=5+4-54+4-5244.53+ ...
=0+4+55+4-524+4-55+ ...
=04+ O04+55+4-554+...
=0+ 0+ 0 +5584.-.
=04+ 04+ 04+ 0 +---

with 0's as far out as we care to carry it.
It may also seem a trifle strange to write

2/3=44+154+3.5 415543564 ...
where the coefficients beyond the first are alternately 1 and 3. Yet multiplying
by 3 gives
2=1243-54+9-52 43554 9.5¢+ - ..
=24+ 04+ 0+ -0+ O04---.
Furthermore
VT=14+13+132403 4234 ...,
For if we square this series, retaining only terms whose exponents are <4, we
have
=1+23+3:3+23 453+
=1+234+ 04+ 04+ 0 +---.

2. Justification of the p-adic numbers. No one will deny that the above
examples put a heavy strain on our earlier conceptions of the terms equality and
convergence. It is obvious that the statement

—1=4+4-5+4.5244.554 ...

~
|

is absurd if ordinary convergence is intended. The whole point to Hensel’s the-
ory is that this is not ordinary convergence, but a new type of convergence
which, from the point of view of abstract algebra, is equally worthy of the name.

A relation of equality for a mathematical system 2 is defined as follows.Let
a, b, and ¢ be elements of 2. Then

* Presented for the Slaught Memorial Volume of the MONTHLY.
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1938] THE p-ADIC NUMBERS OF HENSEL 501

Either a =b or a£b (Determinative property).
. a=a (Reflexive).

If a =0, then b =a (Symmetric).

. If a=b and b=c¢, then a =¢ (Transitive).

These four properties of equality are all that are needed in mathematics, and
consequently constitute an abstract formulation of the concept.

When Hensel* introduced the p-adic numbers, his treatment was somewhat
informal, but he had a perfectly sound feeling for what he was doing. The pres-
ent vogue is to introduce the p-adic numbers by a method due to Kiirschék,f
similar to the well known development of the real numbers by Cauchy se-
quences.

Let a, b, - - - be rational numbers. A function ¢ is called a valuation if

1. ¢(a) is a positive number or 0,

2. ¢(a) >0 for a5%0, $(0) =0,

3. ¢(ad) =¢(a) ¢ (),

4. ¢p(a+0b) =¢(a)+¢(d).

From (3) with b=1, we have ¢(1)=1. From (3) with ¢ =b= —1, we have
¢(—1)=1. Then, with a = —1, we have ¢(—0) =¢(b).

Clearly ordinary absolute value, ¢(a) = I al , is a valuation. Furthermore, the
four properties listed above constitute an abstract formulation of the concept
of absolute value in the sense that only these properties are needed for the de-
velopment of the real numbers from the rational numbers by the method of
regular sequences.

We recall that the ordinary integers or whole numbers 0, +1, +2, +£3, - - -
are called the rational integers, to distinguish them from algebraic integers such
as ————\/ 3 which are not rational. A rational prime such as +£2, +3, +5,
+7 - - is a rational integer neither 0 nor +1 such that, if it is resolved into
a product of two rational integral factors, one of the factors must be 1 or —1.
Two integers are relatively prime, or prime to each other, if their only common
divisors are +1.

Let p be a fixed rational prime. Every rational number ¢5£0 is uniquely
expressible in the form

BN

a = (r/s)p, §>0,

where 7 and s are rational integers prime to each other and to p, and #» is a ra-
tional integer. We define

o(a) = p77, a#0, $(0) =

The function ¢(a) is o valuation for the rational field.
Properties (1) and (2) are evident. If

* K. Hensel, Theorie der algebraischen Zahlen, Teubner, 1908,
t J. Kiirschdk, Journal fur diereine und angewandte Mathematik, vol. 142, 1913, pp. 211-253.
1 See B. L. van der Waerden, Moderne Algebra, 2nd ed. I, Springer 1937, p. 221.
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502 THE $-ADIC NUMBERS OF HENSEL [October,

a= (n/s)p™, b= (rs/s)p",
where 71, 1, 72, and sp are prime to p, then
ab = (riry/s155) p™tn,
where 7172 and sis. are prime to . Hence
d(ab) = p~m = ¢(a)-¢(b).

Without loss of generality assume that m <#. Then

715 roS1p"™
a—l—b=12+ 251P pm

S182

)

where 515 is prime to p, so that
o(a+b) = pm = ¢(a),
o(a +b) = ¢(a) + ¢(b).
Let p be a fixed prime, and let ¢ be defined relative to . A sequence
{a:;} = (a1, a5, a8, -+ , a5, -+ )

of rational numbers is called regular if for every positive rational number € there
is a positive integer #. such that

o(a; — a;) < e i, J > #e.

Denote by 2, the set of all regular sequences {a; } Two such sequences are
defined to be equal if, for every ¢, there is an %, such that

d(a; — bs) < e > ne.

Equality as defined above is determinative, reflexive, symmetric, and transitive.

The determinative property is evident. The reflexive property follows from
the definition of regularity. Symmetry follows from the fact that ¢(—a) =¢(a).
Transitivity follows from the “triangle property” ¢(a+b) <¢(a)+o ().

The theory now proceeds as in the usual treatment of real numbers as regular
sequences. We define

{a} + {6} = {as + 0], {ai} - {:} = {adi}.

The sum and product of regular sequences are regular. The set , of all regular
sequences, with equality, addition, and multiplication as we have defined them,
is a field of characteristic zero—that is, it is a field which contains a subfield
isomorphic with the rational field. Indeed, two fields 2, and Q, where p and ¢
are distinct primes are non isomorphic so that we obtain infinitely many essen-
tially different fields, each, of course, different from the real field. But like the
real field every Q, is perfect—that is, incapable of further extension by means of

regular sequences based on a valuation which extends the valuation by which
2, was defined.
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1938] THE $-ADIC NUMBERS OF HENSEL 503

It is one of the standard procedures in analysis to show that every real num-
ber can be represented as an infinite decimal—that is, a series of the type

(1>_,+ + a0+ 1)+ 1)2+
“~\10 o a1<10 ‘12(10

or the negative of such a series, with 0=<a;<10. This process can be carried
over intact to the p-adic fields. It may be proved that every regular p-adic
sequence is equal in the p-adic sense to a sequence

pidd, {d} = (@, a0+ arp, a0+ ap+asp?,--+), 0= a<p.
That is, every p-adic number may be represented by a power series
asp”+ - Fataptaptt--, 0=a:<p.

Just as the infinite decimal is automatically convergent in the Cauchy sense, so
is the above series automatically convergent in the p-adie sense. '

It is to be emphasized that for every rational prime p there is a field Q, quite
comparable with the field of real numbers, but not isomorphic with it, nor with
any other Q,. The field @, is the field of all diadic numbers, & of all {7iadic num-
bers, 5 of all pentadic numbers, etc. Once the field has been selected, all cal-
culations remain in this field. We cannot add or multiply a triadic number and a
pentadic number, for instance.

3. Solution of equations. Now that we understand the meaning of a state-
ment such as

AVT=1+134+1324+0-33 42344 ...,

it remains to show how any desired number of terms of the expansion can be de-
rived.
First we note that every p-adic number

asp” + - Fataptaptt--, 0=a<p,
is the sum of a rational number
ap” + - agp?
and a number
ao+ arp + asp® + - -

having no negative exponents, which is called an sntegral p-adic number, or a
p-adic integer.
Two p-adic integers
a=a+aptap+---, 0=aw<yp,
B=bo+ bip + bp?+ .-, 0=0;<p,

are equal in the p-adic sense, according to the definition of §2, if for every ¢>0
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504 THE $-ADIC NUMBERS OF HENSEL [October,

there is an #. such that for 7 >#,,
¢((ao — bo) + (a1 — by)p + (as — ba)p? + - - - + (a: — bi)p?) <.

Suppose that ay=by, a1="01, - - - , and that k is the first integer for which a5 by,
so that a;— by, is prime to p. Then

o((ar — b)p* + (arsr — brr))p*™ + - - - + (as — b)pP) = 1/p%,

so that if we take e<1/p*, the condition that a=p is not met. Thus if a=0,
corresponding coefficients are equal. The converse is evident.

Now if

a=a+ ap+ap*t+---, 0=a:;:<p,
then clearly

a = g, (mod p),

a = ag+ a1p (mod p?),

a = a9+ a1p + azp? (mod %),

a=ay+ ap+ - + ai1p™! (mod p?).
Thus the coefficients aq, a1, a2, * * * , in the expansion of a can be successively
determined from the residues of @ modulo p?¢, ¢=1, 2, - - - . In other words,

a=pif and only if
a = (mod p?)
for every positive integer 1.
Let f(x) be a polynomial with rational integral coefficients, and let p be a
fixed rational prime. We wish to find out if f(x) =0 has a solution « in Q,, and

to determine an arbitrary number of its coefficients.
First, suppose that f(x) =0 has an integral p-adic solution, e.g.,

a=ao+a1p+agp2+a3p3+---, 0=a;<p.
Denote
Qn—1= G+ a1p + aop® + - -+ + an_p™ L.

Thus « is a solution of f(x) =0 in Q, if and only if

f(a) = 0 (mod p?) (1=1,2,3---);
that is to say, if and only if each of the infinitely many congruences

f(ao) = 0 (mod p),

flar) =0 (mod %),

fla) = 0 (mod p%),

..........
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1938] THE $-ADIC NUMBERS OF HENSEL 505

flana) = 0 (mod p7),

‘holds.

The problem is now reduced to a familiar one in congruences. Whether
f(x)=0 (mod p) has a solution or not is usually best determined by trial. If there
is a solution, there is a solution a, 0 Sty <p.

Now there is a well known step-by-step process for finding a solution
(mod p**+1) when a solution (mod p*) is known.* Suppose that

Qn—1 = G+ @1p + asp? + - - - + Gp_1p™ L, f(an—1) = 0 (mod p").
We wish to find @, so that
Qn = o1 + anp™, flan) = 0 (mod pnt1).
By the binomial theorem,

flan) = f(an—l) + dnfl(an—l)Pn + -
= flan) + aof'(@n1)p™ (mod pm+1),

where f’ denotes the derivative. Since f(a,—1) =0 (mod p"), there exists an in-
teger %,—; such that

flan—) = hn_sp™ (mod p+), 0= hna<p.
Hence @, can be determined from the congruence
anf'(@n-1)p™ + ha1p™ = 0 (mod p+1),
which is equivalent to the congruence
1) nf’(@tn-1) + ko1 = 0 (mod p).

Clearly a, will exist unless f'(ay—1) =0, %,_15%0 (mod p). If it exists, it can be
chosen in the interval 0 £a, <p.
In order that

x2 =17

be solvable in triadic numbers, it is first necessary that 7 be a quadratic residuef
modulo 3. This condition is met, for both 1 and 2 are solutions of x2=7 (mod 3).
Let us take the first solution. Then ap=ap=1.

flx) = «* =17, flag) = — 6 = 3 (mod 9), ho =1 (mod 3),
f'(®) =22,  f'(a) = 2 (mod 3).
Then (1) becomes

* L. E. Dickson, Introduction to the theory of numbers, University of Chicago Press, 1929, p.
16, ex. 4.
t Dickson, lc., p. 30.
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2a; + 1 = 0 (mod 3),

which has the solution @; =1. Thus a; =1+1-3=4is a solution of x2=7 (mod 9).
The second step gives a; =4,

fle) =9, =1, f(u)=28=2(mod3),
2a¢; + 1 = 0 (mod 3), a; =1, as=1-4+1-341-32,
Two more steps give
ag=1+4+1.34+1-3240-33 4 2.3,
which was checked in §1.
The other value of @y, namely 2, is the first term of another triadic solution,
B=24+13+13242.3340-344.--.

There are no other triadic solutions of x2=7.
The equation

»?»+x4+1=0,

whose roots in the complex field are not real has no solution in pentadic num-
bers, since

22+ x4+ 1 =0 (mod 35)
has no solution. However, it has two heptadic solutions,
a=24+474+6T74 .-,
B=44+2740724 -
with the usual relations a?2=p8 and 82 =q. It is incorrect to think of these solu-
tions as being complex numbers—they belong to the field ;.

So far we have looked only for integral p-adic solutions of f(x) =0. But if the
leading coefficient of f(x) is divisible by # while not all of the other coefficients
are divisible by p, f(x) =0 may have a p-adic solution which is not integral. But
this situation involves no difficulty, for a simple transformation reduces this

case to the preceding.

Consider the equation
0x2 = 7, Qs.

This has no integral triadic solution, since
9x? — 7 = 0 (mod 3)

has no solution. But a transformation 3x =y yields an equation y?=7 which
we have solved in Q3. Then the given equation has as solutions the fractional
triadic numbers

a= 3141413403423 4---,
B=12314+14+13+234034---,
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4. Rational numbers in Q,. The close analogy of the p-adic series with
infinite decimals is well exemplified in the behavior of the rational numbers. A
rational number 7/s with # prime to s can be expressed as a finite decimal if
and only if every prime factor of s is 2 or 5. A positive rational number 7/s with
7 prime to s can be expressed by a finite p-adic series if and only if s is a power
of p.

A decimal is finite or periodic if and only if it is equal to a rational number.
Analogously

A p-adic series is finite or periodic if and only if it is equal to a rational number.
It will be sufficiently general to consider the series
a=A+ p*B + pFHiB 4 pEUB 4 ...
where
A=ga+ap+ -+ ar1p®?, 0=a:<p,
B=2by+bip+ -+ braptt, 0=b<p.
We shall call B the period of a. Then
a—A = p*B + p[p*B + p*'B + - - - | = p*B + pila — 4];

that is,
p*B

1— pt

a=4+

)

which is clearly rational.

To prove the converse, first suppose that e =7/s is a negative proper rational
fraction, » prime to s, s prime to p and positive. There exist positive integers /
such that

pt =1 (mod s)

by Euler’s theorem. Let / be the smallest such integer—that is, / is the exponent
to which p belongs* modulo s. Let

1 — pt = ms, m <0, mr > 0.
Then
a=r/s=mr/(1 — pY.
Since « is proper, mr is expressible in the form
mr =B = b+ bip+ -+ + bi_1p™t, 0=b:;<p.

Then
a=B+plB+p2lB+

is periodic.

* Dickson, lc., p. 16.
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If « is positive, it can be written as the sum of a polynomial in p and a nega-
tive proper fraction. The development of —a can be obtained by subtracting
the development of « from

0=p1+G@-Dp+@-Dpr+G-Dpr+- -

Neither of these operations will destroy the eventual periodicity of the series.
The methods of this paragraph are quicker and more effective for rational
numbers than the more general method of §3.

5. Generalizations. The ideas which were disclosed in the development of
the p-adic numbers have inspired much modern research. Hensel* himself ex-
tended the theory far beyond the simple p-adic fields: to g-adic rings where g
is not a prime, to p-adic extensions of algebraic fields, and to functions over such
fields and rings. The concepts of valuation and p-adic extension are of great im-
portance in the modern theory of linear algebras,t and their ramifications are
still being explored.

A NOTE ON THE USE OF THE LAPLACE TRANSFORMATION
H. P. THIELMAN, College of St. Thomas

In recent years a great deal of work has centered around the Laplace trans-
form of a function F(f).1 In this note we shall prove an elementary theorem
concerning such a transform, and show how it may be used in evaluating some
definite integrals.

By definition the Laplace transform of F(¢) is the function f(«) given by the
formula

fla) = fo e (i)dt.

We shall first prove the following:
TreOREM: If f(a) is the Laplace transform of F(t), then

[ raa= [ T a,

provided these integrals exist.

The proof of this theorem goes as follows: From the hypothesis that the sec-
ond one of the last two integrals exists, it follows that the integral

* K. Hensel, Zahlentheorie, Berlin 1913. Mathematische Zeitschrift, vol. 2, 1918, pp. 433452

t Deuring, Algebren, Ergebnisse der Mathematik, vol. 4, Springer, 1935, p. 99.

1 D. V. Widder, The inversion of the Laplace integral and the related moment problem,
Transactions of the American Mathematical Society, vol. 36, 1934, p. 107; Necessary and suffi-
cient conditions for the representation of a function by a doubly infinite Laplace integral, Bulletin
of the American Mathematical Society, vol. 40, 1934, p. 321. H. T. Davis, The Theory of Linear
Operators, Principia Press, Bloomington, Indiana, 1936, pp. 24, 25, 28 ff.
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