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FOREWORD

The Fourteenth Annual Summer Research Institute, sponsored by the American
Mathematical Society and the Association for Symbolic Logic, was devoted to
Axiomatic Set Theory. Financial support was provided by a grant from the
National Science Foundation. The institute was held at the University of Cali-
fornia, Los Angeles, from July 10 to August 5, 1967, and was attended by more
than 125 participants. The Organizing Committee consisted of Paul J. Cohen,
Abraham Robinson (chairman), and Dana S. Scott (editor). Special thanks are
due to the Department of Mathematics of UCLA for providing facilities and
assistance which contributed in large measure to the excellent success of the
meeting.

The program for the four weeks of the institute was organized into two ten-
lecture series, given by Dana S. Scott and Joseph R. Shoenfield, plus individual
contributions generally in one-hour sessions at the rate of four lectures per day.
By the last week this was reduced to three per day, as the strength of the partici-
pants had noticeably weakened. Nevertheless, most of the success of the institute
was due to the fact that nearly everyone attended all of the sessions.

The papers in this volume of the proceedings represent revised and generally
more detailed versions of the lectures presented at the institute. In view of the
large number of papers, which resulted in delaying the receipt of papers from some
authors, it was felt advisable to divide the proceedings into two volumes so as not
to delay the publication of these papers any longer.

DanA S. Scott



SETS, SEMISETS, MODELS

PETR HAJEK

This is an expository article written for two purposes. First, it is to give a
survey of works of the members of the Prague seminar on foundations of set theory
and a full bibliography of them. Secondly, it is to explicate the matter of interest
from the present point of view and, in fact, to summarize the contents of a mono-
graph being written by P. Vopénka and the author of the present paper. These
two purposes are followed simultaneously throughout the paper; the author
would be glad if the paper was of some help as a guide for reading papers mentioned
in the bibliography.

Speaking on the study of foundations of the set theory in Czechoslovakia we
must begin with the name of the late Professor L. Rieger. He was the first
Czechoslovak mathematician to work on this field. (See Czech. Math. J. (89) 14
(1964), 629 fI. for a short account of his life and papers.) After his tragic death in
1963, his student and fellow-worker P. Vop&nka founded a seminar and engaged
the attention of several young people for the study of foundations. Now, after
five years, the seminar consists of the following members: B. Balcar, L. Bukovsky,

K. Hrbakek, T. Jech, A. Sochor, P. §tépének, P. Vopénka and the author.

Let us begin with a trivial remark. Studying metamathematics, it is not uniquely
determined which intuitive concepts are presupposed to be sufficiently known. In
the case of the syntax of axiomatic theories, in our case of the set thgory (or of
theories of sets), the notion of a finite sequence of symbols and that of an effective
(decidable) system of these sequences may suffice. There are at least two reasons
for such a minimization of means: the metamathematical one, consisting in the fact
that the finitary conception of the syntax gives to our metamathematical study more
“anthropological” character and enables us to answer adequately the question of
what the mathematicians can do (prove, decide) and what they cannot. Secondly,
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68 PETR HAJEK

there is a mathematical reason, consisting in the fact that, from the mathematical
point of view (i.e. from the point of view of developing a particular axiomatic
theory) finitary metamathematical results may be consequently understood as
auxiliary principles for obtaining new proofs or notions in the theory we are dealing
with. Thus, we keep this finitary intuitive conception, being interested in founda-
tions both as logicians and as mathematicians. E.g. a statement “there is a
formula . .."” is demonstrated if and only if an effective method is given for finding
such a formula. Speaking on a mapping in the metalanguage we always assume a
method to be given which enables to find the image of every element to be mapped.

Even if not formulated explicitly, that which is said above has been our point
of view from the beginning. But, because of the simultaneous metamathematico-
mathematical interest, parts written in the object language and those written in the
metalanguage are sometimes not distinguished clearly in earlier papers from
the bibliography. The reader is suggested to read those works on the basis of
the present paper.

As we are interested in the study of concrete theories (namely, the Godel-
Bernays set theory and some related theories) we are forced to choose the basic
formal system quite rich and thus quite near to actual mathematical techniques.
But it need not be explained in details. Imagine simply, we have variables and
constants of various sorts, predicates of various ranks, and operations of various
sorts and ranks. One sort is preferred as universal. Terms and formulas are defined
in the usual way: any (finite) sequence of formulas may be considered as an
axiomatics. The language of an axiomatics is the (finite) list of all predicates,
constants, operations and sorts of variables occurring in the axioms. (A sort may
be represented by an arbitrary variable of this sort.) The notion of logical axioms
(tautologies) and deductive rules is defined; thus, we have a formal notion of a
proof in an axiomatic theory. (Theory is given by its axiomatics.) If .7 is a theory,
then a formula is a .7 -formula iff it is formulated by means of things occurring in
the language of .7 ; a .7 -formula is 7 -provable (denotation: .7 F ¢) iff there is a
proof of it from the axioms of 7. A theory % is an extension of 7 iff the sequence
of axioms of .7 is a segment of the sequence of axioms of .%’. The notion of a con-
tradictory and consistent theory (introduced in this order) is usual.

A mapping # of 7 -formulas into .#-formulas is a syntactic model of  in
& iff

(a) A respects both logical axioms and the axioms of .7, i.e. maps these
axioms into #-provable formulas,

(b) # respects deduction rules, i.e. if a  -formula immediately follows from
some .7 -formula(s) (assumption(s)) then the image of the former formula is
provable in the extension of % by the image(s) of the assumption(s);

(c) # respects the negation, i.e. the negation of the image of a 7 -formula is
provable in the extension of % by the image of the negation of that formula.

Provability principle. Let .# be a model of .7 in &, then the image of every
7 -provable formula is %-provable.

fomee
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Consistency principle. If 7 has a model in & and .7 is contradictory then &
is too; a fortiori, if 7 has a model in & and % is consistent then 7 is too.

A 7 -formula ¢ is said to hold in a model .# of 7 in & iff & + ¢” (¢“ being
the image of ¢ by .#). A model .#, is stronger than .#, iff every formula holding
in #, holds in .#, too. .#, is equivalent to .#, iff .#, is stronger than .#, and
My is stronger than .#,. Identical mapping of .7 -formulas is called the identical
model of 7. 1f M, is a model of 7, in 7, and A, is a model of T, in T ,,
then the composed mapping is denoted by .#, = .#, and called .#, constructed in
M 5. Theories 7 and F are equivalent iff there are models .#, of .7 in & and
AMyof & inF such that A, = .#, is equivalent to the identical model of 7 and
My * M, is equivalent to the identical model of &

ExAMPLES. (1) There may be defined explicitly what a definition of a predicate,
constant, operation, sort of variables respectively in a theory is. An extension of
a theory by adding such a definition is equivalent to the original theory. (2) More
generally for constants: Let  F3x;,...,x,)m(x,...,x,). If we add the
axiom 7(ay, . . . , a,) where @’s are new constants we obtain an equivalent theory.
(Tn this case we say that we have fixed the parameters with the help of .)

Now it is possible to formulate the axioms of the fundamental gédelian theory
of classes TC and describe a very general kind of models of TC in itself. We are
interested in developing this theory from a unary predicate € and variables of the
universal sort only (the language (g, X) is called the fundamental language); all
other notions, including the equality predicate, are defined. (This possibility has
been observed and used by several authors.) Instead of doing it explicitly we only
give the definitions of the notions we need; the axioms serve only to the fact that
the following definitions really are definitions in the sense of the calculus.

X=Y=(NVZ)(ZcX=ZcY)
Ax=X)=32)Xe2)
ze{X,Y}=.z=XVz=
(x, ) = {{x}, {x, y1}

equality predicate
set variables
pairing operation

ordered pair operation

(Vy)(xeV) constant for universal
class

xeCX)= Au,v)(x = {u,v) &xeX &uev) e-representation on X
(operation)

xeX—-—Y=.xeX&xe¢Y difference

xeDX)= @y, x)eX) domain
xeX|Y=xeX&Au,v)(x = U, v) &veY)
xe@n(X)= Qu,v)(x = (u, v) & (v, u) e X)

x e Cny(X) = Qu, v, w)(x = (w, v, w) & (v, w, u) € X) ternary conversion

restriction

conversion

! By the way, if we gave up our finitary point of view, it could be of some interest to deal with
the category of theories as objects and (some) syntactic models as morphisms.
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The operations { }, €, —, D, [, €n, €n, are called godelian operations and
sometimes denoted by F;(X, Y),..., §(X, Y) (in this order). A term built up
from the constant ¥, universal variables and the operations ,, . . . , §, is called a
godelian term. A formula built up from the predicate €, universal variables
(called also class variables), and set variables in which no class variable is bound
is called normal. A well-known metatheorem on normal formulas may be stated
in the following way:

Let ¢(xy, ..., 5, X1, ..., X,) be normal. Then there is a godelian term
T(Xy, ..., X,)such that

TCF S - 1 B BB Ry s s ) = w0 s 35,5 Kig o s 5 Fon:

Even if we have not written down the axioms of TC we shall use some names
of them, Besides two auxiliary axioms F1, F2 we have an axiom Al “justifying
the definition of the ordered pair”, Bl “justifying the definition of the universal
class” and B2 — B7 “justifying the definitions of the operations ¥, — &;”. (E.g.
Bl is (AZ)(Yx)(x € Z) etc.)

A theory of classes is any extension of TC such that every new axiom either is
formulated in the language of the preceding segment (is a proper axiom) or is a
definition of a new concept.?

Fundamental formulas are formulas of the fundamental Janguage, i.e. those
built up from the predicate € and class variables. Set formulas are formulas built
up from € and set variables.

Fundamentalization principle. Let J be a theory of classes. Then there is a
mapping & associating with every J -formula ¢ a fundamental formula ¢”
deductively equivalent to ¢ in J°; moreover, the sequence of images of proper
axioms of 7 is a theory 7 equivalent to 7 and & is a model of 7 in 77, ¢”
is called the fundamentalization of ¢.

Given a theory of classes .7 and another theory &, given further a binary
predicate €* and a sort of variables X*, Y*, ... in the language of &, we may
define a mapping of .7 -formulas into #-formulas as follows; for every 7 -
formula ¢, take its fundamentalization r;r"_ and, in the latter formula, put €*
instead of €, X* instead of X, etc. This mapping is denoted by .¥:(7, &), where
< is the language (€*, X*) (read: the imitation of the 7 -formulas given by .%);
this mapping is a model of 7~ in .% iff images of proper axioms of 7 are provable in
&, (This notion is closely related to the Tarski's notion of relative interpretability ;
cf. also [18], [42].)

Sometimes we do not have such a language (€*, X*) (which may be called an
F-like language) but we are able to introduce it. In the optimal case, we find two
formulas (X) and e(X, Y) such that we are able to define X* as those X that x(X)
and to define €* with help of &. The couple of formulas y,¢ is called a nonparametric
basis (of an F-like language). A triple 4 of formulas w(u), x(X, u), (X, Y, u)

? Notions which are used in the usual sense will not be defined here, as the power class, the
field of a relation etc.
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(u being a finite sequence of variables) is called a parametric basis ift & v (u)m(u)
and & Fa(u) - (3X)x(X, u). Having such a basis we may first fix parameters
with help of 7 (“take arbitrary but fixed a such that #(a)”) and then define X* as
those X that y(X, a) and X* €* Y* as &(X, Y, a). (We obtain a theory &
equivalent to & in this way.) Let us write £u(7 , #) instead of S (T, F)
where £ is (€*, X*). Or we may associate with every .7 -formula not containing
the variables # (more precisely: with its fundamentalization) a formula @7 (7-#)
by the following induction: (X € Y)?¥7# is ¢(X, Y, u), (p & )7 7#) |s
I & T A ete., (VX )OO is (VX)X 1) — [p(X)PoT )
etc. (The mapping P« ¢ is called the parametric imitation of 7 -formulas given by
A.) If ¢ is closed then m(a) — ¢”*7+#) (a) is deductively equivalent to ¢*"(7#)
in &, (one can say even more); butin any case, p”*"*7+#) has at least free variables
u; to every closed ¢ a notion concerning u is associated in this way. Given a
concrete basis, we write usually @* instead of ¢ *) and ¢* instead of 7",
(¢" is often read “¢ holds in sense of u”.) We also write Cls*(X) instead of x(X, u).

Let # = (w(u), x(X, u), (X, Y, u)) be a basis in &. A basis &' = (7')(n),
(X, u), e(X, Y, u) is called a specification of # (in &) ift & Fn'(u) - n(u). If #
determines a model of Z and #’ is a specification of & then &’ determines a
model of J stronger than the former one.

Very important example for TC. Define in TC: Relation is a class of ordered
pairs. Extension of x in a relation R (denoted €xt(x)) is the class {y; (y, x) € R}.
Ris an E-like relation (denotation: Elk(R)) iff R is a nonempty relation, is internal
(i.e. for any x, y € field(R), €xtp(x) = Cxty(y) implies x = y) and closed with
respect to the st operation (i.e. for every x, y € field(R), there is a z such that
Extp(z) = {x, ).

The triple .1 tc(R) of formulas

EIk(R), X < field(R), (3z€ Y)(X = Gxty(2))

is a basis which determines a model of TC in TC. E.g. the relation £ = (V) is an
E-like relation.

Classes of the model are all subclasses of the field of R; elements of the field
of R are codes of sets of the model, the membership is determined by R (X belongs
to Yin sense of the model iff the code of X belongs to Y). Now, we are interested
in theories stronger than TC and their models. Evidently, the basis .4 1c(R)
determines a model of TC in every theory stronger than TC; but if we specify the
conditions on R, we obtain more. We are just going to discuss this.

We shall deal with two extensions of TC: with the theory of sets TS and the
theory of semisets TSS. The former one is equivalent to Gddel’s theory with
axiom groups A, B, C and corresponds to ZF without the axiom of regularity.
The latter one is weaker than TS and was formulated by Vopénka in Summer 1967
in cooperation with the author; this theory is explained here with the permission
of P. Vopénka. Semisets are defined in TC as subclasses of sets. (Sm(X) =
(3y)(X = v).) This notion is superfluous in TS, as all semisets are sets; but
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it is of a fundamental importance in TSS. As we shall see, there are two ways
of constructing models of TS in TSS (with some additional axioms): going
below, i.e. omitting some proper classes (nonsets), and going above, i.e. make
semisets to sets. Itenables use.g. to demonstrate various forms of the independence
of the axiom of constructibility by constructing models of TSS in TS (which is not
difficult) and then working in TSS. From this point of view, TSS is the key means
of the latest Vopénka’s reformulation of Cohen’s method; the advantage consists
in the fact that main proofs are done not about model-sets etc., say, in the model,
but simply in TSS. See below for more details.

Relations will play a prominent réle in the sequel. Let us define some notions
about them (in TC). R is called nowhere constant iff, for any x, y € D(R),
€zt (X) = Cxty(Y) implies X = ¥. If R is a relation, then R is ca]led.regular iff
all extensions are semisets, i.e. (Vx € D(R))(3 W)(€Cxtp(x) = y). Regular nowhere
constant relations may be considered as 1-1 associations of semisets to sets; it
helps to formulate some axioms. Axioms of TSS: those of TC plus

(A2-(A7T) M(F(x.y) i=2,...,7 (gddelian operations make sets from sets)
(C1) Ax # 0)(Vyex)(Azex)(y < z) (infinity)
() R regular nowhere constant — (Sm(D(R)) = Sm(2W(R)))

(W(R) is the domain of values, i.e. {y; Ax)({yx) € R)}). Axioms of TS: those of
TC plus (Cl1), (C2), plus

(C3) every semiset is a set.

The axioms (A2)-(A7) are provable in TS, hence TS is stronger than TSS,
Further, the original Godel’s axioms (C2)-(C4) are provable in TS and our
axioms (C2)—(C3) are provable in Godel’s axiomatics. But we cannot replace (C2)
as an axiom of TSS by Gédel’s (C2), (C3) (power set and sum set axioms). The
power class and sum class of a set is proved to be a set in TSS. In TS, (C2)
may be evidently replaced by

(C2) R regular nowhere constant — (M(D(R)) = MB(R)))

(M being the predicate . . . is a set”).
First axiom of regularity:

(D1) MXO)VEAN@WX) N x = DX N y)).

Equivalently: For every relation whose domain is a semiset there is a subrelation
which is a semiset and has the same domain.

In TSS + (D1I), the comprehension schema is provable. A class X is said to
have set intersection property (SIP(X)) iff, for every set x, X M x is a set. Define
new variables X* for classes with set intersection property, define X* e* Y* =
X*€ Y* In this way, we obtain a model of TS + (D1) in TSS + (D1) with
absolute notion of set. As a consequence, we obtain the
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Equiprovability principle. Let ¢ be a set formula. Then TSS 4 (D1) ¢ if
and only if TS + (D1) | ¢.

The model just described is called the natural model and denoted by .47« /.

Consider the basis 4 7c(R) defined above. We write ¢ instead of
@ TS8-I reR) - Define (in TSS): Let R be an E-like relation. (a) R is almost
universal iff every semiset included in the field of R is included in the extension of a
x € D(R); (b) R is closed with respect to the ith operation iff (Ai)* holds (i = 2,

., 7; te. the axiom (A7) holds in the sense of R); R is closed iff it is closed with
respect to all 7 operations. (c) R is relatively infinite iff (C)® holds. (d) Ris a
model relation (Mrel(R)) iff it is regular, internal, closed, relatively infinite and
almost universal.

METATHEOREM. The basis
Mrel(R), X < field(R), (Fz e V)X = Cxtyp(2))
(it is a specification of A 1c) determines a model of TSS in TSS and of TSS + (D1)
in TSS 4 (D1). (Cf. [2], [8)).

In other words, we can prove in TSS (4 (D1)) that all axioms of TSS (+ (D1))
hold in sense of every model relation. A fortiori, we can prove the same in TS
(4 (D1)) but we cannot prove (C3)) in sense of every model relation in TS. The
basis just described is called the normal basis for TSS and denoted by .4 rss(R);
also the corresponding model is denoted by .4 'rss(R). The composed model
ANl « A 155(R) is called the normal model of TS + (D1) in TSS + (D1). The
theory TSS + (D1) will be denoted by TSS'. '

Model relations of the form E N P, E being the original membership relation,
and P being a transitive class, are of particular interest. We define (in TSS): Pisa
model class (Mcl(P)) iff it is transitive, contains with arbitrary x, y results of all
godelian operations from them and, for every semiset X < P, there is an x € P
such that X < x.

THEOREM (TSS). If P is a model class then E N P is a model relation®

Hence if we want to construct models of TS in TS 4+ (D1) it suffices to prove
the existence of various model relations in the latter theory. Cf. [34].

On the other hand, a mathematical theory of model-relations and model-
classes may be developed within the theory of (semi)sets; e.g. we may study the
structure of model classes as interesting set theoretical objects not speaking about
metamathematical problems.

Let us also give a slight generalization of the notion of a model relation.
Define (in TSS): R is a weak model relation (wMrel(R)) iff there is a model relation
Ry and a function F such that F maps the field of R onto the field of R, and
(Vx, v efield(R))({x, y) € R = (F(x), F(»)) € Ry). An X < field(R) is called
saturated iff, for every x € X, y e field(R), €xtr(x) = Cxtrp(y) implies y € X.

3 This theorem may be used also for ZF as a metatheorem: let a class P be defined, let

ZF + (1) x, yEP = F,(x, )) EP, (2) x € P~ (FyEP)Yx < y), (3) P is transitive. Then P is a
model for ZF.
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(Denotation: Satp(X).) The basis
wMrel(R), X C field(R) & Satp(X), (Az € Y)(X = Cxtp(z)

determines a model of TSS (+ (D1)) in TSS (+ (D1)) equivalent to .f 1¢s(R).
Ultraproduct-relations (see below) give examples of weak model relations.

Now, let us deal briefly with TS. (We shall come back to TSS later; the
equiprovability principle will supply a lot of theorems of TSS.) Ordinal and
cardinal numbers are defined in TS in the usual way. If the first axiom of choice
(E1) is assumed (every set can be well-ordered), cardinal arithmetic may be
studied (cf. [25]).

Further (stronger) axioms of regularity and choice are formulated as analogous
to each other.

(D2) There is a regular relation R such that D(R) = On (the class of all ordinal
numbers) and W(R) = V.

(E2) There is a function F such that D(F) = On and W(F) = V.

Evidently, TS F E2 — D2, D2 — D1, E2 — El. Both axioms can be strength-
ened by defining a relation (function) and postulating that it fulfills the conditions
of (D2), (E2) respectively.

(D3) is equivalent to the usual regularity axiom; define p, = 0 (empty set),
Par = the power set of p,, p; = U,.;p, for 2 limit number, Ker = U,cp,px
(D3) is the assumption Ker = V. Defining (xo) € R = x € p, we obtain a relation
about which we prove in TS + (D3): R is regular, D(R) = On, W(R) = V.
Hence TS + D3 — D2. Tt is well known that (D3) is consistent as it is provable in
TS that Ker is a model class and (D3) holds in the sense of that model class.

In TS + (D3), the following theorem concerning model classes is provable
[49]: Let M, N be model classes, let the axiom (E1) hold in sense of M, let
P (On) = P~ (On) (i.e. M and N have the same sets of ordinals). Then M = N.

The assumption that (E1) holds in sense of M is essential, see the paper by
Jech in this volume.

The consistency of (E2) can be proved by means of the so called effective model.
The model class of hereditarily effective sets equals (provably in TS + (D3)) to the
model class of hereditarily ordinal-definable sets defined by Myhill and Scott;
so we do not describe it in this paper (see this volume for the paper of Myhill and
Scott). The axiom (E3) is the assumption that the class of all (hereditarily) effective
sets equals V. It implies (E2) but need not hold in sense of all hereditarily
effective sets. The Gddel axiom of constructibility ¥ = L is stronger than (E3)
and holds in sense of the model class of all constructible sets, so all these axioms
are consistent (which is well known). More generally, it is provable in TS that,
for every X, there is the smallest Z such that Mcl(Z) and Cls%(X); it is denoted
by L.

On the other hand, the nonprovability of (D3) is an immediate consequence
of the following theorem provable in TS + (D1): (see [14]; the proof can be

e e —

SETS, SEMISETS, MODELS 75

radically simplified): Let R be a regular internal relation, then there is a model
relation S such that R< S, (Vx, M({x, M eS & yefield R)— (x,y) € R),
u S field(S) — (3z € D(S))(u = Cxtg(2)).

E.g. the consistency of the existence of a proper class of urelements (sets such
that x = {x}) follows immediately. Classic Fraenkel-Mostowski permutation
model classes may be studied. For some particular results see [36], [40]. Itis also
possible to show that not only DI & —EI is consistent but also D1 & El.

From now, let TSS* be the theory TSS’ + (D3) 4+ (E2), TS* be TS + (D3) +
(E2). We deal with TS*. The wltraproduct weak model relation is defined in
dependence on a complete boolean algebra and two other parameters. (This
generalization of the usual ultraproduct relation is done by Vopénka.) Let b be a
complete boolean algebra; Part(d) is the set of all disjointed partitions of b.
(An x < b is a disjointed partition of b iff

1) Vx =1, Q) Viyvex)u#v—uhiv=0,))

Part(b) is a lattice (with respect to the partial ordering by being finer). Asetcisa
partitive structure on b iff it is a filter on Part(b), or ¢ equals to Part(b). Let,
moreover, = be an ultrafilter on &; we define f'e Ule(b, ¢) (ultraproduct class) iff
there is an x € ¢ such that fis a mapping with the domain x (values arbitrary sets);
for f, g e Ule(b, c), put (f,g) € Ulr(b, ¢, 2) if V{u Av;u,veb & f(u)eg)} ez
(ultraproduct relation).

TueoreM (TS*). If b is a complete boolean algebra, =z an ultrafilter on it, ¢ a
partitive structure on it, then Ulr(b, c, z) is a weak model relation.

METATHEOREM. Let ¢(x,...,¥) be a set formula; then the following is
provable in TS*: Let b be a complete boolean algebra, z an ultrafilter on it, ¢ a
partitive structure on it, let R be Ulr(b, ¢, z). Then, for every f, . .., g € Ule(b, c)

B (Exty (f),...,Cxtp(eN=V{ua---Av;u,...,veb&op(f(u),...,g0w)}ez.

Considering the power-set of a set x as a complete boolean algebra & with the
usual set-theoretical operations, let us write Part(x) instead of Part(b) and speak
about partitions of x instead of partitions of b etc. as usual. Functions whose
domain is a partition of x can evidently be replaced by functions on x constant on
every element of the partition.

It is well known that the ultraproduct model relations may be used for the
study of large cardinals (in theories in which we assume such cardinals). We do
not mention details here; let us only mention the result of Vopénka-Hrbacek
concerning the fact that the existence of a strongly compact cardinal is inconsistent
with the axiom “‘there is a set @ such that V' = L,” (see [41]). The proof uses two
different partitive structures on an appropriate set and corresponding ultraproduct
mode] relations.

We present also two theorems proved by Balcar and Vopénka (not yet pub-
lished). Define in TS*: Let s be an infinite set; an ultrafilter z on s is uniform iff
every element of z has the cardinality of 5. c_is the partitive structure on s of all
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partitions p of s such that the cardinality of p is less than N,. c, is the partitive
structure of all partitions p of s such that z N p # 0. ¢, V ¢y, 18 the partitive
structure generated by ¢. and ¢y . zisfineiff ¢, V cy_is a maximal filter on Part(s).

THEOREM. [f2%z =R, then, for card(s) = R, there are 28«+1 fine ultrafilters
on s.

If £, g € Ule(s, c) then fis said to be almost equal to g iff there is an x € z such
that /| x = g | x.

THEOREM. Let R, be regular, = a fine ultrafilter on X,. Then every mapping of
R, into itself either almost equals to a constant function or there is an x € z such that
S x is strictly increasing.

Let us come back to the theory of semisets. There are two important axioms
we shall deal with:

(S1) For every nonempty semiset X, there is a y € X such that X Ny =0
(regularity for semisets).

(S2) There is an internal regular relation R such that D(R) = ¥ and, for every
semiset X, there is a y such that €xtr(y) = X (all semisets can be coded by all
sets).

E.g. let M be a constant for a model-class in TS*, let X* be a variable for
subclasses of M and €* the usual membership; then the language (€*, X*)
determines a model of TSS + (S1) + (S2) in the former theory.

Define in TSS: A model relation R is an extension of the theory (Eth(R)) iff
there is a mapping H of V into the field of R such that

(D Mcl (H"V) & (Vx, y)(x € y = (H(x), H(y)) € R),
(2) for every semiset X < field (R), there is a y € field(R) such that

TueorReM (TSS' + S1 + S2). There is an extension R of the theory; it is
uniquely determined in the following sense: if R, S are extensions of the theory then
Ker® is isomorphic to KerS with respect to R, S.

Hence, the specification of the normal model of TS in TSS’ + (S1) + (S2) by
Eth(R) is a model of TS in TSS' + (S1) 4 (S2) such that the identical model of
TSS’ + (S1) + (S2) is equivalent to a (transitive) submodel of the former model.
In this way, we obtain a model of TS in TSS’ + (S1) + (S2) “going above”.

There is an axiom stronger than (S1) 4 (S2); itis called the axiom of a support.
Define in TSS: A semiset X is a support iff, for every semiset Y, there is a function
S Wwhich is a set such that ¥ = f-1[X].

(Supp) There is a support.

DerINITION (TSS).  Let b be a complete boolean algebra (set); a semiset Z is a
set-multiplicative ultrafilter on b iff (1) (Vx,yeb)(xeZ & y > x.—~>ypeZ),
@) (Vxeb)(xeZV —x€eZ), (3) forevery seta < Z, Aac Z.
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Define: A support is a boolean support iff it is a set-multiplicative ultrafilter ona
boolean algebra b.
(B Supp) There is a boolean support.

THeEOREM (TSS*). (B Supp) =. (Supp) & (S1).
THEOREM (TSS*). (B Supp) —. (S1) & (S2).

METATHEOREM. Let ¢(b), w be set formulas, let TSS*, w - (Vb)(¢p(b) — b is a
complete boolean algebra) & (Ab)p(b); then the formula

3b)(AZ)(@(b) & Z is a set-multiplicative ultrafilter on b & Z is a support)
is consistent with TSS* 4+ o.
This is proved using ultraproduct model relations.

METATHEOREM. Let, under the assumptions of the preceding metatheorem, y be
a set formula provable in TSS* + o 4 (3b)(AZ)(b is ¢. b. algebra & Z is a set-
multiplicative ultrafilter on b and is a support); then v is provable in TSS* 4+ w
(a fortiori, in TS* + w).

E.g. a proof of the following theorem may be obtained in this way: (see [53])

THEOREM (TS*). Every locally nonseparable metric space is a union of an
increasing sequence of N, nowhere dense sets.

THEOREM (TSS*). Let Z,, Z, be set-multiplicative ultrafilters on a complete
boolean algebra b, Zy, Z, supports. Then there is an automorphism p of b such that
p”Zl = Zz.

The theory of supports can be applied very fruitfully to the study of model
classes in TS*, because—as we already have seen—TSS with the axioms (S1), (S2)
axiomatizes well the power class of an arbitrary model class in sense of which the
axiom of choice holds and makes its extension possible. We define in TS*: Let
M be a model class; a set x & M is a support over M iff, for every y & M, there
is a function fe M such that y = f7[x]. The following theorem is obtained
immediately:

THEOREM (TS*). Let M be a model class, q a support over M. Then there is a
b e M, which is a complete boolean algebra in sense of M, and an ultrafilter z on b
closed under intersections of all systems a S b, ae M (say, M-multiplicative),
which is a support over M.

Thus, for every definition ¢ of a complete boolean algebra, we may e.g. suppose
consistently in TS* (¢ a set formula): The algebra defined by ¢ in sense of the
universe of constructible sets has a constructibly multiplicative ultrafilter which is a
support over L (and, of course is not constructible). We obtain a lot of consistent
axioms in this way; many conditions concerning sets of constructible sets
(absoluteness of cardinals, cardinalities of power sets) may be derived from the
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properties of the algebra b on which we have a support. We may also characterize
all model classes with the axiom of choice; they are described by all subalgebras
of b. Another result of Vopénka:

THEOREM (TS*). Let V = L, where a < On, then there is a support over the
model class HEf of hereditarily effective sets.

Now, suppose, we have an arbitrary model class A/ with the axiom of choice, a
b € M which is a complete boolean algebra in sense of M and an M-multiplicative
ultrafilter on b which is a support. The universum V{} of boolean valued functions
may be defined in sense of M such that (Yfe M)(fe V) = fis a mapping of a
subset @ € M of V) into b) (cf. Scott, these Proceedings, part II, and Vopénka
[50]). The value w(f) of every f€ V{} in z is defined such that

w(f) = {w(g); §eD(f) &f(g)eZ;.

THEOREM (TS*).  Let = be an M-multiplicative ultrafilter on b (b is a complete
boolean algebra in sense of the model class M), let = be a support. Then every set is a
value of a boolean valued function from V. This is to say, boolean valued fimctions

of M code all sets.

A historical remark should be placed here. After P. J. Cohen had proved the
independence of the continuum hypothesis and the axiom of choice in 1963,
Vopénka tried to use his ideas to prove in TS* the existence of a model relation in
sense of which the continuum hypothesis does not hold; speaking metamathe-
matically, to demonstrate the consistency of the negation of CH with TS* in the
described straightforward finitary way. It was done in the paper [12] published
in Russian. Although this paper is closely related to those of Cohen, some new
ideas were necessary because—as Sheperdson had proved—it was necessary to
construct a non-well-founded relation which is not a set (and is a model relation
with the negation of CH) without any assumptions concerning countable models.
Then the conception was generalized and simplified in a series of eight papers
([16], [19], [20], [33], [21], [31], [46], [48]) written partly together with the
author of the present paper. It was proved that the number of parameters of the
so-called V-model relations can be limited to two—a complete boolean algebra
and an ultrafilter on it. The whole theory was then presented in the paper [50].
The conception of this paper is deeply analogous to that of D. Scott presented at
the Los Angeles Summer Institute but, of course, discovered by both authors
independently. From the new Vopénka’s point of view, using semisets, boolean
valued functions play only auxiliary, even though very important rdle. The
advantage consists in the fact that we need only to prove the consistency of the
existence of a support on a complete boolean algebra with the theory of semisets
(which is done easily using ultraproducts) and then we deal with model classes and
supports over them in the set theory, hence in the standard way, having the result
about the extension of the theory of semisets. Let us also mention the fact that, in
Scott’s terminology, the statement *“¥ %) has a support over (" holds in every
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boolean valued model. (More precisely but less generally: Assume V = L.
Then, for every complete boolean algebra, the statement “There i1s a set x of
constructible sets such that, for every set y of constructible sets, there is a con-
structible function f such that y is the counterimage of x by f has the boolean
value 1.)

For consistency proofs of particular statements using the methods just
described, see e.g. [26], [47], [51], [S2].

Given a normal filter on the group of all automorphisms of b (everything in
sense of the model class M) the class of hereditarily symmetric boolean valued
functions is defined (see [21], [31] and Scott, these Proceedings, part 11). The
values of hereditarily symmetric functions form a model class. In this way, model
classes in which the axiom of choice fails can be obtained, and consistency of
various statements contradicting axiom of choice may be demonstrated. (Seee.g.
(391.)

Consistency proofs for some existential formulas using Fraenkel-Mostowski
permutation models can be modified using the method just mentioned. A general
method comes from Jech and Sochor (see [37], [38]). Let us formulate their
result in a form modified a little.

Define in TS: po(2) = z, p,a(2) = the power-set of p,(2), p,(z) = U, -, p,(2)
for 2 a limit number, Ker(z) = U,c0, p.(2). A definition ¢(«) of a cardinal
number 1s good iff

TS F(3'e)(e cardinal number & ¢(o))

TS, Cn = Cn% F(Va)(YM)Mcl(M) — ¢(o) = ¢ (2))
(Cn being the class of all cardinal numbers, L the model class of all constructible
sets). Let « be a constant defined by a good definition of a cardinal number, let
y(z) be a set formula with only one free variable z. (2) is said to be a-restricted
iff all quantifiers are restricted onto p,(z). The formula (3z)y(z) is said to have a
permutation model iff, for a constant A defined by a good definition of a cardinal
number, the following is provablein the theory: TS 4+ V = Ker(Ur) + card(Ur) =
2 (Ur is the constant for the class of urelements): “There is a normal filter F on the
group of all permutations of urelements such that, if we denote the Fraenkel-
Mostowski model class determined by F as M., (32)(z= N Ur = 0 & p'’#z) holds.

The result of Jech-Sochor: Let « be defined by a good definition, let y(z) be an
g-restricted set formula, let (3z)y(z) have a permutation model. Then (3z)p(2)
is consistent with TS 4 (D3).
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