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THE AITERNATIVE SET THEORY

by Antonin Sochor , Prague

The aim of this paper is to give a brief outline of Alternative
Set Theory (AST) . This theory makes possible the synthesis of a
number of mathematical disciplines using new methods, and these new
approaches are natural from the point of view of AST

Alternative Set Theory was created by P. Vopénka and he presented
its first version in his seminar in 1973, After the investigation of
the consistency of that axiomatic system (by the author [2]) the ori-
ginal system was modified (by P. Vopdnka) and is now called AST 5
P, Vopénka developed in AST such basic notions as e.g. natural num-
bers, infinite powers and real numbers, and proved a large number of
fundamental statements and proposed the conception of topology. During
the last two years the foundations for the development of mathematics
in AST have been laid. Besides P, Vopénka other members of his se-
minar, in particular J, Mlgek, K. 6uda, J. Chudafek and the author
of the present paper also participated by their results in the crea-
tion of mathematics in AST ., At the same time the metamathematical
problems of AST were investigated by the author.

This paper includes only some mathematical and metamathematical
results concerning AST selected to show the possibilities of the
theory and to explain its relation to the usual set theory. The re-
sults concerning model theory in AST (obtained by J. Midek and the
author) are not included at all. The first comprehensive text about
AST , including most mathematical results about AST , was written

by P. Vopenka (in Czech).A similar text about the metamathematics of
AST is also being prepared,
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First let us explain some reasons why we started to deal with
AST . At the end of the last century, Cantor developed set theory.
Although his theory was inconsistent, it influenced the whole of ma-
thematics in a decisive way. Very scon theories (consistent, we hope)
based on Cantor’s ideas were constructed — now we have e.g. the
Zermelo~-Fraenkel, GHdel-Bernays, Morse and New Foundations set the-
ories. We shall speak about all these theories as Cantor’s set the-
ories. We can ask whether there existed possibilities to build up
another theory that could replace Cantor’s set theory and, consequen-—
tly, whether there were other possibilities to develop mathematics in
our century. At first let us mention at least the following two reas—
ons why Cantor’s theory was SO important and so fruitful:

1) Cantor’s theory became the world of mathematics. All theories
investigated up to Cantor’'s time can be considered as parts of set
theory. More precisely they have models in Cantor?s theory. For some
theories (e.g. for the theory of real nuubers) thelr creation was fi-
nished only after this modelling. We have an interpretation of infi-
nitesimal calculus in Cantor’s theory, too, but Leibniz’s and Newton’s
original ideas had to be reformulated before this modelling. This was

necessary since the notion "infinitely small" cannot be naturally mo-
delled in Cantor’s theory.

2) Cantor’s theory is a theory of infinity. In Cantor’s set
theory we have actual infinities and moreover Cantor’s theory made
possible a general investigation and classificzstion of the notion of

infinity.

A theory which wants to be an alternative to Cantor’s set theory
must satisfy these two requirements at least. Our AST is a theory
of infinity and contrary to Cantor’s 1S as poor as possible — there
are only two infinite powers. Another difference between AST and
Cantor’s theory consists in the fact that Cantor’s set theory places
infinity "behind" finite sets and AST places it "among" finite sets.
Infinity is represented in our theory by indeterminate (by a set for-
nula), vague parts of finite sets (see the definition of the "coun-
table" class An further in the text).

The problem whether AST fulfils the first requirement is much
more complicated. To show that AST could be the world of nathematics
in Cantor’s time we have to interpret all the theories in question in
AST . We hope that this is possible, up to now we have modelled real
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numbers (more generally we have developed topology in AST). Moreover
we aFe trying not only toc model all these theories in AST , but are
1?0k1ng for their natural interpretations (this concerns mainly infi-
nl?esimal calculus). And this is the main reason why we started to
build up AST .

In AST there are means which are not available in Cantor’s the-
ory. For example we have "inaccessible" natural numbers and therefare
we can model in AST the notion "infinitely small”. This enables us
to interpret directly Leibniz’s and Newton’s ideas. Further we are
able to investigate in AST the connection between the continuous and
the discrete, From one point of view we can consider a space (and the—
refore a motion) as discrete and from the second point of view the
same space appears as continuous.

Now, what is the connection between AST and nonstandard methods?
In some aspects, they are similar e.g. models showing consistency of
AST with respect to Cantor*s set theory are particular non-well-founded
models, On the other hand there are the following two differences at
least: At first nonstandard methods deal with models in Cantor’s the-
ory and AST 1is a new axiomatic theory (which can hardly be considered
as a precise axiomatization of nonstandard methods). The second diffe-
rence is even more important. We want to use means which are available
in AST to obtain new approaches and new formalizations of notions in
an immediate and natural way (and without intermediate steps such as
Cantor’s set theory and nonwell-founded models as in the case of non-
standard methods).

For every set theory, T , the theory T for finite sets (TF-
denotes the theory T where we replace the axiom of infinity by it;n
negation.

AST 1is similar to the theory of semisets (see [3]) in the sense
that both admit classes which are subclasses of sets and which are not
sets. It is possible to say that AST is some strengthening of the
theory of semisets for finite sets (without the axiom C2) . But the
ma%n difference is again in what we want to do in AST ; from this
point of view, the theory of semisets is very near to Cantor’s theory.

Now we shall describe the construction of AST . At first it is
a theory of sets, because we want to keep the useful procedures and
notions of Cantor’s set theory. Our theory is similar to GHdel-Bernays
or Morse for we have classes and sets. Sets can be thought of as objects
0f our investigation and classes can be thought of as our view
(approach) to these objects or, in other words, classes can be consi-
dered as idealizations of some properties. Our theory has only finite

)
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sets, but classes can be infinite. This approach corresponds with
one’s idea of the real world - all sets as sebts of people, houses and
so on are finite and only our generalizations and ideali-
zations are infinite, as e.g. the class of all natural numbers, the
class of all real numbers and so on. On the other hand there are possi-
pilities to treat some sets (formally finite) as infinite. We have
precedents in real life for this, too. For example the number of all
atoms on our globe is considered as finite, but it is also possible
to consider it as inaccessible.

AST is a theory with one sort of variables - class variables -
denoted by ¥X,... and two binary predicates - relationship € and
equality = . Sets are defined as members of classes and are denoted

by Xye.o

§ 1 The axioms of AST

1) xiom of extensionality for classes i.e.

VX)(XeT=Xe2Z)=Y=2

2) All axioms of Zermelo-Fraenkel set theory for finite sets.

3) Morse’s class existence scheme i.e. for every(including non-normal)
formula ¢(X) we have the axiom

(AXNV)(x € X = 9(x))

Up to now we have formulated only axioms which are either exioms
or are provable in Morse’s set theory for finite sets. The following

axiom is inconsistent with Morseg;, and therefore by accepting our

fourth axiom we depart from Cantor’s set theory. In MorseFin the sta-
tement
™) X ¢ x -» M(X)

is proveble, on the other hand its negation is proveble in AST ., Each
mathematician is accustomed to the statement (*) and the question is
if there are reasons to assume its negation. Vopénka’s argument must
be repeated here:

Ch. Darwin teaches us that there is a finite sequence with monkey
Charlie as the first element, with Mr. Charles Darwin as the last ele-
ment and such that each element of the sequence is the father of the
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following one, Of course the first element is a monkey and the last
?1ement is not a monkey since it is a man. Moreover if some element
1s a monkey then the following one is a monkey, too. If there existed
a set of a%l th? monkeys in our sequencey we would have trivially a
cantradiction with the statement that Mr. Ch. Darwin is not s monkey
(every set of natural numbers has a first element). Tt is natural the-
refore to assume that the property "to be a monkey" describes only a
class (in this case we do not obtain a contradiction because we do not
require that every class of natural numbers has a first element),
' Our example is not artificial, such situations are very frequent
in real life. Moreover the existence of proper classes which are Sub—
classes of sets enables us to assume that every set is finite and
simultaneously to have infinite powers.

We are now going to formulate our fourth axiom. Using axioms
1) = 3) we can define the natural nwibers as usual s» N denoting the

class of all natural numbers. We define the class of all absolute na-
tural numbers by

An = {n e N ; (VX)X ¢ n > MX))}

(a natural number is absolute if all its subclasses are sets). Let us

?ecall that in MorseFin we have trivially An = N , On the other hand
in our theory we accept the axiom

4) Axiom of extension

Fnc(F) A D(F) = An » (F£)(Fnc(f) A F c £)

(every function defined on An
a set).

is a subclass of a function which is

An # N follows from this axiom and therefore we get the negation
of the statement (*) . The axiom of extension is very strong and one
can say that it is the most important axiom of our theory. It enables
us to grasp the notion of limit very naturally. Moreover natural num-—
bers which are not absolute can be considered as inaccessible i.e. in
Some sense infinite. The existence of such natural numbers enables us
to model the notion of "infinite small'.

Our fifth axiom is the axiom of choice:

5? For every equivalence relation there is a selector.
ilnce all sets are finite we can prove the existence of a selector
Or every set equivalence relation from the other axioms. Therefore
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our axiom of choice gilves something new only for proper classes.

The last axiom says how many infinite powers we have. Let X 2y
denote that there is a 1-1 mapping (possibly a proper class!) of
X into Y eand let X<~ Y stend for X€ YA YL X . We can prove
using the axiom of .extension that - An ~ N . The cardinality of An
can be considered as the infinity of "real” natural numbers and the
cardinality of N can be considered as the infinity of real numbers
(continuumy in the axiomatic system 1) = 5) we can code all subclasses
of An by some natural numbers). The last axiom of AST postulates
that there are no other infinite cardinalities.

6) Axiom of cardinalities

Mm->X~<0N

Ny

- X

We have vhence in AST +two kinds of proper classes - countable
("small") and the others, the cardinality of which is that of the
continuum ("large") . Therefore the axiom of extension can be refar—
mulated in the following form:

Every countable ("small") function is a subclass of a set function.
Trivially this statement camnot be true for "large" functions.

§ 2 Metamathematics of AST

We have now described all the axioms of AST . Befaore we describe
what we can do in AST we are going to discuss the consistency of
AST and more generamlly the connection between AST and Cantor’s set

theory.
Ve have the following diagram:

MorseFin —_—> AST k_-—_/:yF

where — means that there is an interpretation of the first theory
in the second one and <7 means that the interpretation in question
does not exist. In this paper we restrict ocurselves to sketching a
proof of the existence of an interpretation of AST in Zermelo-
—Fraenkel set theory, a fact which is almost obvious. The following

construction is done in Zermelo-Fraenkel.

Let M = (M,EMM) be the model of all hereditarily finite sets
and let Z be a non~trivial ultrafilter on w, . Let R =«(K,B) =
= M“%/Z be the usual ultrapower. § is a model of ZFp;, end to
obtain a model containing classes we add "all subclasses of f" i.e.

———————
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.fl' = <ﬁ (v} Q,E v (EI\Q)> where Q = {X c ﬁ H -:(af)(x:_{g;ﬂ |= g € f})}

then §° |k AST is provable ; in the following two paragraphs we are
going to prove particularly that the axiom of extension and the axiom
of cardinalities hold in §° .

Let k, be the constant function the value of which is x ., The
class of all absolute natural numbers in our model is the set of all

roxg

constants the values of which are natural numbers i.e. An-l\l =
=4k, : n € o t . To prove the axiom of extension in the model let us
suppose X° E FPnc(F) A D(F) = An , then for every n ¢ w, there is a

function £, such that F" E (f)k,» € F . Let us define a function
f on Wg by

f(n) = {(f,](n),'l),...,(fn(n),n>}- o

We can suppose f € fI and moreover we have f° k Pne(f£) A Fc £ .

To prove the axiom of cardinalities suppose that we had started
} Yo . ’
in ZF + 2 ° = 5q1 . In this case we have card.(AnI—\T ) = &0 and

card(NE ) = card(R) = N4 « Therefore for every infinite X ¢ § there
1s -1 mapping between X and either Anﬁ' or Nﬁ' . Hence for
XeQ wehave §' X< AnVXSN. If X={g: Rk ge £} then
ﬁ' Ef<AnV fA~N (in fact only the second case can happen). If

X c § is finite then there are f and n € w, such that
X=Jg:fkegecthp B ik .

The following metamathematical results concern independence of
the axioms. Our attention is directed mainly to the problems relating
to the last three axioms. The resulbts concerning the last axiom are
satisfactory: We can prave that the theories obtained, from AST , by
the substitution of the last axiom by one of the axioms "there are
there (four,... resp.) cardinalities”

"there are cofinally many cardinalities"
are consistent with respect to Zermelo-Fraenkel set theory.

We can also prove that the theory obtained from AST by the
substitution of the axiom of extension by its negation and by adding
?he axiom (which seems to be only a slight modification of the axiom
in question)

F g an® A Fno(F) . » ( £)(Fnc(£) A F ¢ 1)

1S consistent with respect to Zermelo-Fraenkel seb theory.
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The question concerning the independence of the axiom of choice
is open up to now,

It is well known that Zermelo-Fraenkel and 88del-Bernays set the-
ories are equiconsistent. In AST the situation is not so simple.
Since An plays in AST the role of w, in Cantor’s theory, we sup-
pose that all formalizations of theories are parts of An . ITn AST
we can define the notions of "formula" and "proof" either as usual
(i.e, with respect to all natural numbers) or we can substitute in the
usual definition the words "natural number" by the words "absolute
natural number". Therefore we have in AST proofs - the length of
which can be an arbitrary natural number, and absolute proofs - the
length of which must be an absolute natural number. It seems better
to restrict ourselves to absolute proofs. If we do not do so we can
prove e.g. the following strange result:

The theory

AST + Con (ZFFin) + = Con (GBFin)
is consistent with respect to Zermelo-Fraenkel (of course the length
of the proof of inconsistency of GB cannot be an absclute natural

number).

§ 3 Topology in AST

Tn this section we want to show how it is possible to define to-
pology in AST and furtemore roughly how AST makes it possible to
grasp the connection between the continuous and the discrete.

A pair (a,=) 1is called a topological space if a 1s a set and
if £ 1is an equivalence relation on it (possibly a proper class),

We can interpret the relation < as a relation of infinitesimal
nearness. First we need some definitions in which x,y denote ele-
ments of a and X,u,v denote subclasses of a .

Mon(x) =4y : y = x}
(The monad of x dis the class of all points infinitely near to x)
FigX) =4y : (Ix e X)Wy = XD} = UX Mon(x)
x€

(The figure of X 1is the class of all points infinitely near to some
point of X).

__d_ = = '
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Sep(y,X) = (Ju,v)Mon(y) c u A Fig(X) SV AuUNY =)

(We can separate a point y from a class X .if there are two disjoint
sets one containing the monad of y and the other containing the
figure of X).

We have the following axioms of separation:

81  Mon(x) n Mon(y)

0 - Sep(x, {y})

82  MNMon(x)n Fig(u) 0 » Sep(x,u)

0f course there 1s the natural question as to the connection bet-
ween this notion of topological space and the classical one. Now we
shall define the closure operation which constitutes the classical to-
pological space corresponding to our topological space. Let a pair
(a,=) be a topological space and let A c a be a selector with res-
pect to = , For every Y c A we define U(Y) by

UY) =4y : y€ LA - Sep(y,T)}
(the "classical closure" of Y is the class of all elements of A
which cannot by separated from Y).

The class A with the closure operation U @&s called the skeleton
of (a,=) . For Y,%Z c A we have

U(0) = 0
V(Y v Z) = UCY) u U(Z)
Y ¢ UCY)
and therefore the skeleton of a topological space is a classical to-

pological space in a weak sense - Gech’s closure space (see [4]).

The closure of a 81-space is a semi-separated closure space since we
have

U{xb) ==} .

If a pair (a,=) is a BS2-space then the skeleton of it is a topolo-
glcal space because we have moreover
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U(u(y)) = () .

Constructing the skeletons we create classical topological spaces
and we can ask whether we obtain enough classical topological spaces
in this way. Theorem 2 gives a posibtive answer showing that we can
obtain in this waylevery compact metric space.

To define the notion of metric space we need real numbers, The
class of real numbers can be constructed in AST otherwise than in
the classical case. As we have noted the class An plays in AST +the
same role as wg in Cahtor’s theory. Therefore we define the rational

numbers as palrs where n,m € An 1.e.

BIB

Rac = 4{ + % : n,m €in Am#£ O} .

Moreover all pairs % where n,m run over all natural numbers are
called hyperrational numbers l.e.

HRac = { + = : n,me N Am # O} ,

BIB

We define (the idea is the same as in nonstandard analysis) two hyper-— '
rational nuwmbers X,y to be infinitely near iff their distance apart

is less than o for every absolute natural number or if both x,y

are infinitely great 1.e. greater than every absolute natural number:

2

= Vn<xAn<y).

x=2y=(Vne a)(|x-y| <

If we choose a selector with respect to = we obtain a class
which has some of the properties of the real numbers e.g. for which
the theorem about supremum holds. But there is one disadvantage -
there is no x with x° = 2 , we have only x with x° & 2 (and
similarly for the other irrational numbers). Therefore it is better
to construct at first a real closed field containing HRac and to
extend the equality = to these new elements (we add new elements to
vld monads e.g. V2 ). Then it is possible to choose a selector Real
having the properties which are required from the class of real numbers
(this construction is due to P. Vapé&nka),

A function p 1is called hypermetric if

) W(p) ¢ HReal

(2) p(x,3) =0 =x =y
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(3) p(x,3) = p(y,x)
) p(x,3) + p(3,2) 2 p(xy2) 2 O
(5) M(p)
A function p (possibly a proper class) satisfying (2)~(4) and
(1) W(p) c Real
(") (dv)p c®b

is called metric. A pair (a,p) 1is called hypermetric space if

D(p) = a® and if p is a hypermetric(a is a set). 4 pair (4,p)

is called metric space if D(p) = 4% and if p 1s a metric (viz.the
notion of "classical metric space", the only difference 1s that A,p

need not be sets). The class of real numbers with the metric

pq(x,y) = |x - y| becomes a metric space. Every hypermetric induces

a topology if we define

1

x 2y =(¥ne an) plx,y) < 3

We have the following metrization theorem:

Theorem 1.(M1&ek). A topology = is induced by a hypermetric
iff = is an intersection of countably many sets i.e., iff there is a
class {4 : n € An} such that L is equal to () a .
neAn

This theorem has a nice history. We locked for a long time for a
metrization theorem. One day J. Ml8ek came up with a theorem the for-
nulation of which was rather complicated, but when P. Vopghka formul a-
ted the above theorem, we saw that M1€ek’s proof worked. Therefore
the theorem in question was proved before it was formulated. The names
given with the following theorems indicate only the person who brought
the main idea ; the other members of the seminar also papbticipated in
the creation of the results. Due to the method of work of the seminar
it is very difficult to attribute a result to only one person. The
Proof of the last theorem was essentially simplified by K. Eﬁda.

Theorem 2. (the author), If a pair (X,p) is a metric space
compact in the classical senee then there is a topological space
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(which is moreover induced by a hypermetric space) such that its
skeleton is isomorphic with (X,p)

Now, we come to the crucial point of topology in AST . We shall
explain the connection between the continuous and the discrete and
the notion of motion. Our construction of skeletons makes it possible
to view one space from two different angles and therefore to have space
simultaneously discrete and continuous. The field of every hypermetric

space 15 a set (hence formally finite) and therefore every hypermetric
space is discrete, on the other hand its skeleton can be continuqus
(see Theorem 2),

Let a pair (a,p) be a hypermetric space. We call a function
f (it is a set) a motion of a point if

) D(f) e NAa W(E)c a
(2) (x + 1) € D(E) » £(ax) = £l + 1)

Note. The set D(f) 1is (formally) finite, but the interesting
cases are only those for which D(f) ¢ An holds, i.e. for which D(L)
is in some sense infinite,

The explanation of why we can speak about such a function as
about motion, is again connected with the skeleton of the hypermetric
space. For example, let (a,p) be a hypermetric space the skeleton
of which is (Real, pq) . Let £ be the function numbering all ele-
ments between O and 1 and at the same time preserving the ordering
(such a function exists since a itself is finite). Then, turning to
the skeleton, we obtain “classical" continuous motion starting with
O and finishing with 1,

We call a function 4 (it is a set) a motion of a set in the
hypermetric space (a,p) if

M D(d) € N A W(d) ¢ P(a)

(2) (@ + 1) € D(a) » Mon(x) N d(x) =~ Mon(x) N dlx + 1)

(2) of the above definition demands that the cardinality of the
class of all elements of d(x) infinitely near to x is the same as
the cardinality of the class of all elements of d(x + 1) infinitely
near 50 x . Therefore in Mon(x) N d(x) has n elements and n € An

T AR
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then Mon(x) n d(x + 1) must again have n elements, But if
Mon(x) M d(x) has n elements eand n ¢ An , then Mon(x)N e + 1)
can have m elements for every m ¢ An since n~m for every non-—
absolute n and wm .

The definition of motion of a set is so weak that we can doubk
if this definition in fact expresses the notion of "real motion.
The following theorem shows that this is so.

Theorem 3. (Vop&nka). Let d be a motion of a set in a hyper-
metric space. Then there is a system T of motions of points in this
hypermetric space such that

“n o € D(d) » Aa) = {£(x) : £ € T}
(2) foe € TAa €D(@) AF£g . > £(a) £ glx)
(3 « € D(d) » M({J{f-e T : £(a) € u})

The first statement implies that every point of a given set
(d(0)) has its motion in T . (2) conveys that two motions of points
in T cannot go through one point. The third statement expresses the
fact that the system T determines moreover the motion of every sub-
set of d4(0)
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