DIFFERENTTIAL CALCULUS IN THE ALTERNATIVE SET THEORY

Antoni{n Sochor, Prague

Motto: When we began with building up the
calculus in AST we hoped to show that
the Newton-Leibniz ‘s ideas of
infinitely small are possible in
modern analysis, too; but now we know
that the use of these ideas is even
necessarye.

Petr Vopénka

In the last year’s lecture (see [2]) we formulated here the
axiomatic system of the Alternative Set Theory (AST) and we tried
to explain some reasons which led P.Vop&nka to building up this
theory (see [1]) and we proclaimed the aims we want to achieve in
4ST. Besides this we discussed some metamathematical aspects of this
theory e.g. we proved consistency of our theory with respect to ZF
set theory. Further we showed how to define basic notions of topology
in AST and described a comstruction of the class of all real numbers
(Real). At the end of the lecture we declared with Petr Vopénka
that Prague Set Seminar would start with the development of the
calculus in AST during the next year. In this lecture we shall deal
with some results we reached in this field. At first it is necessary
to emphasize that the creation of the calculus in AST is not
finished yet, although we succeded in laying the basic stones and
we obtained some interesting results. For this reason it ig
necessary to understand this whole lecture only as a preliminary
report and 1t is possible that some parts contained in it will still
show considerable changes.

4n advocate of non-standard methods will declare after my talk
that we did nothing more than a reformulation of non-stapdard
analysis in AST. And he will be right from his point of view.
Nevertheless it is necessary to stress two things at least. At
first the aim is to build in AST as many mathematical desciplines
as possible and therefore i1t would be foolish to hesitate to use
fruitful ideas from already created mathematical disciplines and
thence non-standard ideas are used in development of mathematics in
AST, too. The second and more important fact, as I think, is that
our work has brought some new views %o the calculus which, as I
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know, were not investigated in non-standard analysis at all.

Among axioms of AST (see [2]) there are all axioms of Zermelo-
Fraenkel set theory for finite sets (ZFFin) i.e. all axloms of ZF
set theory in which the axiom of infinity is replaced by its
negation. Puring our investigations made in the last year we
recognized that it is more conwnient to strengthen these axioms at
least %o the axionm

2) Ve ZFpyp

The difference between the previous system and the system obtained
by adding 2°) instead of 2) is in the fact that the first system
requires induction only for meta-mathematical formulas and the
strengthened one also for formal formulas. We know that the axiom
2’) is independent on the others and using the other axioms we can
prove that 2°) is equivalent to the statement

"There is a system of classes containing V and all sets, closed
under G¥del’s operations such that for every class X of this system
we have ( VX)M(X n x)".

The classical analysis of Newton and Leibniz was divided into
differential and integral calculi. The modern analysis (by this we
mean the modern reformulation of the calculus = Y& = § calculus")
has largely obscured this difference. It is however possible to
understand differential calculus as a method of concluding from the
known course of a function the description of its behaviour in small
neighbourhoods. Similarly integral calculus can be understoand as
a method of concluding from a given description of function’s
behaviour in small neighbourhoods the general course of the
func tion.

This difference between differential and integral calculil
appears in AST still sharper because the course of a function - this
means as the function appears to us - we can describe only on real
numbers. On the other hand the description of behaviour of a
function in the infinitely small neighbourhood of an investigated
point requires a function defined also in points of this neighbour-
hood i.e« also on the points to which we extend the class of all
real numberse.

I Integral calculus
Let us assume that we have a function defined on a convenient
extension of Real (e.g. on H Lkeal, see [2]) and as an example

—
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typical for integral calculus suppose we want to know how the
function describing the area determined by the given function will
appear to us. This problem can be devided into two parts. At first
we have to construct the function which is defined by the sums in
question and in the second part we must investigate how this new
function will appear to us. The first part requires therefore to
naster sums of non-absolute length and the second step can be
solved by the method of skeletons and this method was indicated in
the last year’s lecture. In any case we did not hit any principal
obstacle during the building up integral calculus in AST although
integral calculus is not yet finished and written down.

IT Differential calculus

Now we have a given function on real numbers i.e. we know how
the function appears to us and we want to describe its behaviour
in a differential neighbourhood. At first it is therefore necessary
to extend conveniently the definition of the function into the whole
differential neighbourhood and then it would be possible to define
the derivative and so one In the following we are going to deal
just with extension of the functione Durilng the last year we tested
various approxi mations e.ge. by polynomials, piecewise linear
functions, continuous functions end so on and every member of our
seminar has some results in this field. The problem however
remained in the fact that it seemed that none approximation will
retain all of the desired characteristics of the function. The
following approach removes this disadvantage. Admirers of model
theory will find a satisfaction in the fact that this approach is
based on a theorem from model theory in AST.

In AST we can define natural numbers exactly in the same way as
in Cantor”s set theory and let N denotes the class of all natural
numberse Let oyeee be variables running through N. Moreover we can
define the class of all absolufte natural numbers An by (c¢f [2])

an = {a e N;(VX ca)i(X))

(a natural number is absolute if all its subclasses are sets)

Let nyess denote variables for absolute natural numbers. The
class An is closed under arithmetical operations and we can imagine
absolute natural numbers as "“real" natural numbers. Moreover the
clasgs An plays in AST the same role as w, inh Cantor’s set theory.
Therefore we are going to deal with ultraproducts on &n instead of

. I’
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ultraproducts on we &as it is usual in Cantor’s theory. (Although
An is a proper class and therefore we cannot write An € Z. This
disadvantage can be removed by a convenient coding and in the
following we write 4n "¢ Z withoubt formalism, for more details
see appendix).

Theorem 1 (author). There is an isomorphism between V (with € )
and ultraproduct of V (with the ultraproduct relation).

P.Vopbnka used this theorem for building up differential cal-
culus. bet o be a fixed element of N — An, let Z be a fixed non-
=brivial ultrafilter on An and let G be a fixed isomorphism from
the previous theorem. To every X < V we putb

X={(f e%; (n; f(n) e D" e" 2}

and we define
O(X) = G"Xe

From the well known theorem about ultraproduct (see its formulation
in AST in appendix) and from the fact that & is an isomorphism we
can conclude that X and O(X) satisfy exactly the same normal
formulas. It is not necessary that X< 0(X) but classes with this
property will be interesting for us and in this cases we call 0(X)
the standard extension of X.

V
X
X _{U
|
-n.u.‘tu.'zeq.(— 1
cem be‘dd:lm% \l

P.Vopéhka proved that the class of all real numbers can be chosen
in such a way that it has standard extension. J.Mldek generalized
this theorem and he proved roughly speaking that every separable
metric space has standard extension.

The method described above allows us to solve the problem how
to extemd conveniently functions since we can extend the class of
all real numbers to its standard extension and moreover doing this
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we simulteneously extend every function to the function which
satisfies exactly the same normal formulas.

III Connection between modern and classical analysis

In the followlng we are going to work in AST extended by
adding the operation O defined as described above. Moreover we
suppose that the class Real has standard extension. We can define
infinitely small numbers by x € O(Real) & (Vn e an)(|x| < %) and
hence in this theory we are able to realize differential calculus
of Newton and Leibnig with infinitely small numbers. On the other
hand all formulas of modern analysis can be expressed in our theory
by formulas in which the operation O does not occure. There arises
therefore a very natural question whether when using formulas with
the operation in question we can express more properties than we
can describe using only formulas in which this operation does not
occur. In other words we ask if one can express in Newton-Leibniz ‘s
analysis more than in modern analysis. In this direction we have
the following result (di being variables for infinitely small
numbers, (0,x) denoting the interval between O and x).

Metatheorem 2 (P.Vopdnka). Let ¢ be a normal formula then in
AST is provable

(F4)Va000a,0d50% 000 09Ty yO(K ) yaes,0(X)) =
= (3n2)(Vn1)(3 Jq e(O,-:-ﬁ))(\v’ye E(O»'%'é'))¢(7q,y2:x1w oo ’xk,o(xq)o
vees0(X)) = (Fn,)0V )Ty, €CO)(V7, €(0))g(345725%y

,°"!xkix1l"'!xm)'

For example we define using the notion of infinitely smell
numbers that a function F is continuous if
(Va)(da)(F(xed,) = F(x)+d,)

and therefore this notion can be reformulated by previous statement
%o

(Vi) (Jng) (Vg €005 ( Ty, €00 (BCary,) = F(a)43,)
i.e. to the formula

Vo) 3oy, SO FGy)-F0 < £

and this is exactly the formulation used in modern analysise.

F 2
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One can ask whether Vopgnka’s metatheorem works also for
formulas having three quantifiers for infinite small numbers i.e.
if

(Va(da(Vaye =
z <3n3><\7’n2)<3n V€007, €00 50 (Va5 €000

holds for every normal formula ¢ . K.Cuda constructed a normal
formula for which this is not right (see [3]). Although Cudab
contraexample shows that Vop&nka’s theorem cannot be generalized,
Cuda s formula can be expressed by a formula in which variables for
infinitely small (and operation O, too) do not occur. But this is
not the case for all formulas since we can prove (F being variable
for real function).

Metatheorem 3 (author). There is a formula ¢(F) (of the type
(Jdx € o(an))(Vr & Real)3(O(F),k,r) where § is a normal formula)
such that there is no normal formula ¢(F) (with parameters An and
Real, say) in which the operation O does not occur and with

AST |- o(F) = ¢(F)

We can therefore say that in a very natural sense it is
possible to express ln Newton~Leibniz ‘s analysis more properties
than in modern analysis (modern reformulation of the calculus). If
one wants to be invidious one can say that modern analysis is only
a part of classlcal analysis. Very serious investigation must now
show how large this part is. This part may contain everything
interesting but 1% is also possible that there are very important
branches of Newton-LeibniZ ’s analysis which cannot be described
in modern analysis at all.

Appendixe

The aim of this part is to prove Theorem 4 and Metatheorem 3.
Doing this we have to define ultraproduct in AST and we shall prove
some facts about ultrafilters. We are going to restrict ourselves |
to ultrafilters on An since in the general case there are problems
how to define the class X to every X, The definition of ultraproduct
is very simllar to the usual one in Cantor’s set theory although
we shall essentially use the axiom of extension (axiom(%) [2]) to
prove some theorems about ultraproduct. In the following we are.not
going to prove theorems which have similar proofs ag theorems of
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Cantor’s theory but we only refer to proofs in questl one

At first we need definition of formal formula. Since the class
An plays in AST the same role as w, plays in Cantor’s set theory,
we define the notion of "formula" substituting in the usual defini-
tion the words "natural number" by the words "absolute nabtural
number". Then formulas are absolutely finite sets or if we wish
absolute natural numbers. We define the satisfaction relation for
every model (possibly determined by proper classes) by the usual
definition (we can prove that there is exactly one satisfaction
relation since every part of An has the first element)s We shall
deal with models with absolute equality.

DEFINITION. 4 model Of is called saturated if for every segquence
of formulas {ps(x); 1 € An} with parameters in the
field of (X we have

(Vieand “‘)(0“:34\1'“ [al)=>(Fa) (Vi €4n) T E o1[a]

LEMMA. There is no countable saturated model.

Proof: see the standard proof of this lemma in Cantor’s theory.

THEOREM. Let (I s & be saturated models which are elementarily
eéquivalent. Then there is an isomorphism between them.

Proof. By the axiom of cardinalities (axiom(6) [2]) we have
only one uncountable cardinality. Hence every two saturated
olementarily equivalent models have the same cardinality by the
previous Lemma. Therefore the standard proof that two elementarily
equivalent models of the same cardinality are lsomorphic workse.

THEOREMe < V,E > is a saturated model.

Proof. Suppose < V,E > k /\‘¢J[ai] for every i € An. By the
axiom of extension there is a set function f such that f(i) =
for every i € Ans Put b = W(f) and Y, = {x; x€ bR < V,B>k q),_[x]}.
By the equivalent form of the axiom 2’ )y Y, is a set for every
1 € An. There is a set function g with (Vi e An)g(i) = ¥, again
by the axiom of extension. If we define Y = {vye D(g)s QY g(B) # O}
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we have An C Y since a; € Q Yj. In the definition of Y we use only
sets as parameters and therefore M(Y) since all ZFFin axioms hold
in ASTe The class An itself is n?.f\a set and _from this An £ Y
followse Let Yy € Y — An and a ¢ g(B) < jeah Yj then for every
i€ An we have < V,E > k @1[a] by the definition of T,

For the following let us fix o € N — An,

DEFINITION. A class Z is called a (non-trivial) ultrafilter on An
(in symbols ULTR(Z)) if Z € P(a) and
(8) (¥x,7y eP(@))(AnC xvy = (x€ZvyeZ))
(» (Vx5 € 2)(xnyez)
() 0¢2 & (Vne an)({m ¢ 2)

LEMMA. If Z is an ultrafilter on An then
(8) (¥x,7€P(@))(xnaldn = ynin > (xeZ=y€2))
(0) (¥x,7€P(@))((AnSxuy s %0y = 0) = (x€2=y¢2))
(c) (Wx,7€P(w))((X€Z £ yeZ)= xayel)

Proofs Let y n in & x & y € Z, then ¢ 2 (xv(a-y)) = An and
hence x€ZvVv(n-y) € Z by (a) from the definition of ultrafilter.
If (a-y) € Z then 0 = (@=y) Ay € Z which is a contradiction with
(¢) from the definition of ultrafilter. Therefore we have proved
the statement (a), the others are triviale

THEOREM. There is no coding of all ultrafilters on An by sets i.e.
(VR)(I 2)(vLIR(Z) & (Vx)(Z £ R"(x})).

Proof gan be done as it is proved in Cantor’s set theory that
there is 22 ° ultrafilters on we .
Let a= < 4,R> be a model (with one relation,say) and let 2
be an ultrafilter on An. Put
A = {£3D(£) = & £'an € A).
Let us define analogically as in Cantor’s theory
£ =5 8= (e €4y & (Juez)(unin = {n; £(n) = gln)}))e

Then =mn is an equivalence and thence we can using the axiom of
choice (axlom(5) [2]) choose a selector of this equivalence. Let us
denote the chosen selector by AUt and define
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Ul . Ul
B"={<fe>; fgees & (Juez)(unin = {n; <f£(n),e(n)>em
The model determined by AT and R'L is called ultraproduct and
denoted by Ul(@,Z). Analogically as in Cantor’s set theory we can
prove the following theorems although we need the axiom of extension

in these proofs. (Exactly the same trick as has to be used here is
used in the following metatheorem).

THEOREM. UL (,2) k= (£ 500008) iff (Juez)(unin =
={n; Lk tp(f,](n),---,fk(n))))-

THEOREM. Ul ((X,2) is a saturated model.

In the special case that A=< V,E > we obtain Theorem 4 by
the combination of previous statements. loreover in this case we
define

X={f EVU]‘; (Hu €Z)(unin = {n; £(n)€X})}.
Now we want to show that for every normal formula ¢ we have
OLpseverX) = 0(Xg0eees)e I £ € VL then we put £ = EVlncsy.
Let X* be variable for parts of VU and let us define

I e* v =(Jf ez = D)

Note. Clasies X are parts of VOl and therefore it is convenient
to speak about £ (part of VUl) rather than about f. Of course we
have for every set formula Q

/
85T = (VU< TE>,2) b (24500 008)) 2 92(F5e.,E))

Metatheorem. Let ¢ be a normal formula. Then in AST is provable
A A - -
¢.(f1’oon’fk,o-o,X,I’o-.,xm) = (HueZ)(ur\A.n =
3 {n; (p(f,l(n),...,fk(n),X,I,.-.,Xm)}).

Demonstration. We have ? = é EUl"{f} = EUl"{g} = T =gy & =
Zf =g byone of the previous theorems and for VUl is g selectar
with respect to =;. Lot £ €X* - Y* than £ e xv g £ ¢'y*
and hence X* = ¥Y* = X* =% y» , This ensbles us to reéstrict ourselves
to the following two kindsof atomic formulas:

() f e*f=refz<t,e> el = (Juez)(unan =
= {n; £(n) e g(n)))
A -— -

() £ e*X=feX = (Juez)(untn = (n; f(n)e 1)



282 283

The induction steps for £ , 7 and the step showing We have two operations of "closure" X! and X according to
(3f)¢‘(9,31,---,fk,i,,---,Tgn) - (Juez)(unan = ultrafilters 2, and Z,. Moreover using ultraproducts Ul (< V,E>,Z,)
define two notions of standard extension O
- (me(x’f’l(n),”.,fk(n),xq,“.,%n))) e = e :i gl E\:dv;.f; ,:EEF)w:e :he formule which we obtain by substitutign
of Oizfor O in the formula ¢(F). In the following two steps we
Wwe can choose a function F with undn = {n3¢(F(n),£,(n),e.0,f ()X, prove that ¢,(H) is true and that ¢,(H) does not hold. This
,---sXm))- By .the axiom of extension there is a set function f with finishes the demonstration since if we have a normal formula in
FS £ and we can suppose that £ & VUl. By the induction hypothesis which the operation O does not occur with AST b ¢(F) = ¢(F) it

we have ‘P‘(f’ffl""’fk’i’l""’im)' would be provable in AST that q>,l(F) = W(F) = (pz(F) and this would
Now we intend to prove lletatheorem 3. To make the demonstration be a contradiction.
clear we devide it into five parts. 1) ‘Pi(H) =

( 3k €0(an) (Y r €Real)(1<r< 2 = 0(H)(1'-%-E) = 1)
(3£ eE)(Vr eReal) (i< Ti¢ 21 —»ﬁi(Fie%f) = Ty =

(3= eint)(Vr €real)(Ju €z;)(unin = {n; 1<r<2 => H(roz}(;ﬁ) =
1) =

(dz em)(Vr eReal)(Tuez;)(unan = {n; £(n)e Qud}) =
(3fe£ﬁi)(\dvez1)(3u €2;)(un4n = {n; £(n) €7})

5) We have evidently "]<p2(H) by the choice of ultrafilters Z,
and Z,. Let d be the diagonal (i.00 d = {< Bsp >; Bex} then
{n; d(n) €4n} = An and therefore 4 €An and moreover we have
trivially (Vv ez,l)(HueZ,])(unAn = {n} d(n)ev}) and hence we
are dones

Let u e Z g undn = {n; (Hx)cp(x,f,l(n),...,fk(n),x,l,...,xm)}. Then

1) For every ultrafilter Z, there is an ultrafilter Z, with
(Ve)(Jvez)(Vuez,)(unan £ (n32(n) e vaan}).

(Cf. Rudin-Keisler’s ordering)
To prove this statement fix an ultrafilter Z2 and define

R = {< v,i‘>;(3uezz)(u Nin = {n;f(n)E€vnan)) & vT )} »

Since we cannot code all ultrafilters by sets we can fix an ultra—
filter Z, with (\v/f)(R"{f} # Z,]). Let £ be arbitrary function and
suppose first Z’I - R"{f}>ve. Then ve Z’l and (\/u eZz(un An #£

£ {n; £f(n) €vN An}). The second possibility is that R™{f} - Zy3w
leee (H'Eezz)(’l?n dn = {n; £f(n) €wnin}) & (—w)ez,]. If there is

u €%, such that undn = {n; £(n) € (-w) NAn} then O £ Wnun 4n =
= {n} £f(n) €wn(~w)n An} which is a contradiction. Hence we have
proved (3veZ,])(\/u 622)(u Nin £ {ny f(n) evNAn}) and therefore
the required property again holds for f we have started withe

Using the ideas from the previous demonstration we can
construct a formula in the language of non-standard analysis (this
formula has one bounded variable for elements of Real and one
bounded variable for elements of Real* such that this property
of real function cannot be expressed by a formula quantifiing only
H(r .%—) =1 iff k € (x) variables for Real. But we have to assume that v?e deal with all
2 non~standard models. The problem is whether this result works if

2) Fix Z,‘,Z2 with the above described property. Z,1 is not
countable and hence by the axiom of cardinalities there must be g
11 mapping Q such that Q" (1,2) = Z,+ Let us define

E—r

(i.e. we code members of Z,I by real numbers from the interval (1,2) we consider only models which are enlargements with respect to

and we define H(r.-g-,z) = 1 1iff k is a member of the element of Z, Reall. On the other hand we can strengthen our result supposing ©.ge
that lters Z, and Z., are 'selective" and ultraproducts
the code of which is r) at the ultrafi 1 >

are elementarily equivalent in "nonstandard language.
3) Define ¢(®) by (Jk €0(4n))(Vr €Real)(1<r< 2 -

-> O(F)(r.%E) = 1.

1 The problem is solved.
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THE CONSISTENCY OF THE THEORY

7zF + 11 £ HOD

by

ZBIGNIEW SZCZEPANIAK

In [3] J. Myhill and D. Scott proved that ZFClL' = HOD.
S. Roguski [#4] prowes that every model M of ZFC can bs the class
HOD of some generic extenslon of u. Hence the thearies of the
classes HOD and L. are equal over ZF i.e. 7Fh oL <> ZFCH3 «—s
ZFl-éﬂopfor any sentence ®.
Neverthele ss L1 = HOD cannot be proved in ZF only. We show the
following

THECREM O. If ZF ls consistent then ZF+L1 # HOD is consistent
t00.

First let us recall the definitlon of the class L1
o= L] for limit A
E<A
Lg 1 = the family of all subsets of1 L'la definable by second
order formulas with parameters from Loc .
The proof is based on the observation that 1] depends on
subsets of On only, i.e. any two models of ZF with the samé sets

of ordinals have the same classes Lq.

DEFINITTON 1.

P On

U, P @

LPon] = U, LIP@]

wmm 2. 11 = (pHI® .

1=

Proof., X"Ile prove that for every o

M _ 14L*

™l = a .

dssume that (*) holds for some o« . Then there is a -1 function

»
te Hl*c 1» , T L:‘ = On . Bach uQL; can be codled as




