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Petr Vopénka

Mathematics in the Alternative Set Theory

The decisive part of contemﬁorary maethematics can be characterized
as mathematics in Cantor set theory. Main principles of Cantor set
theory are derived from the notion of actually infinite sets; thus
contemporary infinitery mathematices studies actual infinity. Alter-
native set theory studies infinity as a phenomenon involved in our
observation of:large, incomprehensible sets, Hence properties of
infinity in Alternative set theory differ from properties of in-
finity in:Cantor set theory. This book indicates how mathematics
cen be developed in Alternative set theory., From the formal and
technical point of view, Alternative set theory is rather near to
Non-standard Analysis and can be considered, from this point of
view, a particular case of Non-standard Analysis.

Den wesentlichen Teil der gegenwirtigen Mathematik kann man als
eine Mathematik charakterisieren, die gich in der Cantorschen
Mengenlehre darstellen 188t, Die Hauptprinzipien dieser Mengenlehre
sina aus dem Begriff der aktual unendlichen Mengen abgeleitet; da-
her studiert die gegenwirtige infinitédre Mathematik das Aktual-Un-
endliche. Die Altermative Mengenlehre untersucht das Unendliche als
eine Erscheinung, die unsere Erfahrung mit groBen, uniiberschaubaren
Mengen enthidlt. Daher untersacheiden sich die Eigenschaften des Un-
endlichen in der Alternativen Mengenlehre von den Eigenschaften des

&
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antorschen Mengenlehre, Dieses buch zeigt, wi

Unendlichen in der C
die Mathematik aus der Alternativen Mengenlehre entwickelt werden
kann, Vom formalen und technischen Standpunkt aus dhnelt die Alter-
native Mengenlehre sehr der Nichtstanderd-Analysis und kann, unter
Beriicksichtigung dieses Standpunkties, als spezieller Fall der Nicht-
gtandard-Analysis aufgefaflt werden.
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L'essentiel des mathématiques contemporaines peut étre-céractérisé
comme la partie des mathematiques qu'il eat possible d'exposer a
partir de le théorie cantorienne des ensembles, Puisque les
principes fondamentaux de la théorie cantorienne des ensembles
sont dérivés de la notion d'ensemble actuellement infini, les
mathématiques modernes é&tudient l'infini actuel,

En théorie alternative des ensembles on étudie 1'infini comme un phé-.
noméne inhérent & notre expérience des grands ensembles impossibles
a reduire, C'est pourquoi les propriétés de 1'infini en théorie
alternative des ensembles sont différentes de celles en théorie de
Cantor. Dans ce livre, on montre comméht les mathématiqueé peuvent
étre développées a partir de la théorie alternative des ensembles,
Du point de vue formel et du point de vue technique, la théorie
alternative des ensembles ressemble & 1'analyse non-standard

et de ce point de vue peut &tre considérée comme un cas spécial
d'analyse non-standard.

CoBpeuMeHHYD MATEMATUKY, WIK, TOYHEE, €€ CYNECTBEHHyD UaCThH, MOXHO
OXapaKTepU30BaTH K&K MaTeMaTuKy B KamropoBo#f Teopum MEOXECTB.
OcmoBHHE NMpuHNUNE KaHTOpOBOH# TEODAMM MHOXECTB BHBEJCHH U3 NpEA-
CTABJNCHEMA AKTYAJIBHO GESCKOHCUHHX MHOXECTB, M TAKUM odpaédn COB-
peMeHHAA CECKOHEYHA] MATEeMATHKA M3yYaeT aKTyaJbHyD GEeCROECYHOCTS.

AnprTepHATUBHAA TEODMA MHOXECTB H3yuaer GECKOHEYHOCTD Kak ABIGHNWE,
CONpOBOXJapmee Hame HAOADASHME CONBUHMX, HOOGO3PUMNX MHOXECTE,
llosToMy cBoficTBA GECKOHEUHOCTH B ansTepHATBHOR Teopuu MHEOXECTB
Ipyrue, uem B Teopuu Hamropa. B paGore ykasaHHo, KeKUM O0pa3oM MOXHO
CTDONTH MATEMATHKY B aibrepHATUBHOE reopum umoxecTB. C dopuMansHO
rexHUYeCcKO#t TOuKM BpEHMs, ANbTEDHATHBHAA TEOpHUd NHOXECTB BECMa
6nK3Ka HeCTAaHZApTHOMY aEanudy. B aToM cMHCIe e€e MO¥HO CYMTATH
JaCTHHYE CHy<asM NOCHIeIHErO.



Preface

The main principles of the Alternative Set Theory and of
mathematics based on it were formulated by the present author in
1973. Since then the Alternative Set Theory has been developed in
a seminar at Charles University, Prague, headed by the author. I am
very much indebted to members of this seminar, First of all,

" A, Sochor contributed considerably to the development of the theory
and 1nveétigated metamathematical questions concerning it. Also
K. 8uda and J. Ml¥ek made valuable contributions.

The present work contains only topics elaborated on by the
author in a more or less complete form. Thus, the author’s isolated
special results and topics investigated by the above named collea-
gues have been eliminated as well as topics whose treatment is not
fully in the spirit of the Alternative Set Theory. Only those results
of my collcagues have been included that are indispensable for our
exposition.

Several results not included here will be published in a se-
~ries of papers by various authors; fimal versions of these papers
are being prepared. The}papers will show in greater detail how
various branches of mathematics should be developed in the Alterna-
tive Set Theory. '

Intuitive exposition and questions of conception are emphasi-
zed., The technical parts serve as illustrations of how methods usual
in Cantor Set Theory, Nonstandard Analysis etc. can be imitated the
Alternative Set Theory.

From the formal and technical point of view, Alternative Set
Theory is rather near to Nonstandard Analysis and can be, conside-
red, from this point of view, for a particular case of Nonstandard
Analysis. .

My colleague J. Polivka helped to improve various motivations.
The author ‘s students M. Resl and A. Vencovskd contributed several

minor comments.

Finally, the author wishes to thank his friend P. Hidjek who
translated the whole text into English and to P. Hinman who proof-
read the English text of Chapter I -V, They both helped by various
comments to improve the text.

There were several preliminary lectures on Alternative Set
Theory see e.q. A. Sochor’s papers.
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Introduection

1. Cantor set theory

Cantor set theory is a mathematical theory of finite and
actually infinite sets. It canonizes the main principles accepted
by mathematicians as true asseriions about sgets.

Fundamentals of the theory of finite and infinite sets are
duve to B, Bolzano, who formulated some of its princiﬁies. Later
G. Cantor develppedwaet_theory in-a systematic manner and extended
it by some further principles.

\

Some of the principles forming the basis of set theory concern
finite sets.and have been accepted since the beginnings of civili-
"zation as basic truths not only by mathematicians but by all people.
Due to our education and to the verifiability of very special cases

cccurring in é#eryday practice, these principles are accepted as
self-evident., But a eritical analysis shows a lack of arguments
for their absolute acceptance. For example, we are convinced that
all countings of a given finite set by natural numbers yield
thé‘same number of elements. If we tried to prove this assertion
by matheratical induction, we would only reduce our problem to the
analogous question of the truthfulness of mathematical induction,
Imagine that a set could be found for which one counting gives n
elements and another gives m elements, where m and n are two parti-
cular quite concrete unequal numbers, or, at leasf, that reasons
for the existence of such a set'cquld be exhibited. On the other
hand, assume that the statement saying that each set having n
elements by one counting has n elements by any other counting has
been proved by a concrete vroof., Such a proof would bé'realized
according to the instruction given by mathematical induction,

The situation described would lead to the conclusion that proofs
obeying laws of logic have decreasing convincingness as their
length increases, From this we could conclude that even finitary
mathematical statements can have quite complicated truth values,
not just two, and sc on.

Q)S



But the main subject of Cantor set theory is infinite sets;
their existence is assumed. The main postulatee of Cantor.set
theory concerning infinite sets were not formulated at random, and
they are not immediately derivable from the mere assumption that
an-actually infinite set exists, Their motivation can be found in
mathematics long before the origin of'sét-theory. This concerns
mainly the following two types of postulates.

Pre-get-theoretical mathematics investigated objects of several
preciéely specified sorts, admitting unlimited construction of
objects of a given sort as, e.g., natural numberé, real numbers,
points in the spéce and so on. The infinity inherent in such sorts
of objects is potential-infinity. The first kind of postulate of
Cantor set theory is motivated by the treatment of this infinity
as actual, i.e. by the declaration that all objects capable of succeasive
construction have already been constructed. Repeated generalization
and higher precision have resulted in the determination of the form
of properties of objects so that the collection of all 6bjects
having such a pfbperty is underastood as an actually existing set.

At the same time it has become apparent that there are limits of
generalization in this direction.

In‘additioh to objects of a certain sort, pre-set-mathematics
dealt with objects being in one-one correspondence with subcollec-
tions of thé_éet of all objects of a certain sort, To give an
example, straight lines, planes etc. were also studied in addition
to points in space. Thus we can form the set of all straight lines
for a set of certain subcollections of the set of all points, As
the ultimate generalization of this approach one obtains the
postulate guaranteeing the existence of the set of all subsets
of a given set. In contradistinction to postulates of the first
kind, the postulate of power-set were apparently not known to
Bolzano.

At present the existence of actually infinite sets has become
a dogma believed in by most mathematieians; moreover, mathematicians
try to implant it in the minds of other people. At the same time,
~ we are unable to give evidence of any actually infinite set in
the real world. Thus we deal here with a construction extending
the real world and surpassing qualitatively the limits of the space
of possibilities of our observation. Assertions about infinite
sets thus lose their phenomenal content. The result is that



the further development of set theory has become entirely dependent
on formal means, which are the only sure guide in the darkness
sets are clouded in,.

,: This fact caused difficulties in the very beginnings of set
theory. It appeared that the natural postulates of Cantor set
theory were insufficient. for the decision of the question of the
truth of the axiom of choice. At the same time, the question was
go urgent that it was impossible to wait for formal confirmation
of independence of this axiom., There was no motivation analogous
to that of previous postulates. Eventually, general acceptance
of the axiom of choice was decided for purely formal feasona;
this axiom simplifies considerably the structure of infinite sets
and yields several very elegant theorems. Attempts to motivate
the axiom of choice by its validity for finite sets were disquali-
fied by the axiom of determinateness, which can also be motivated
by its validity for finite sets but which is inconsistent with
the axiom of qhoicé. Moreo#er, it is possible that there are various
other axioms of this kind. It suffices to take any statement true
for finite sets,'acceptéble or even technically advantageous for
infinite sets, but inconsistent with the axiom of choice.

Today a considerable number of sentences of set theory
independent (neither provable nor refutable] from the basic axioms
of set theory is known. Mathematicians are looking without success
for further principles strong enough to decide their truth, The
continuum hypothesis is a typical example., Acceptance of the con-
tinuum hypothesis brings some technical advantages, but set theory
with the continuum hypothesis negated is rather interesting. Thus
we have no unique set theory; instead, we have various set theories
for which the original Cantor set theory serves as their common
frame. '

Moreover, it is possible to formulate different postulates
for actually infinite sets and create in this way a theory of
actually infinite gets distinct from Cantor sget theory. For example,
the power set axiom can be replaced by the postulate saying that
each infinite set can be bijectively mapped onto the set of all
natural numbers. The resﬁlting theory cculd probably compete guite
succesfully with Cantor set theory.

Efforts of mathematicians to fully grasp actual infinity



have been unsuccessful. But this does not diminish the imp&rtance
of Cantor set theory, which remains a document of human aspira- -
tions to surpass limits of space in a way having no analogy in
history. ;

2. Mathematicsiin Cantor set theory

The significance of Cantor set theory for mathematics does
not lie only in the theory itself but also in its position within
mathematics. Soon after the origin of set theory it became clear
that it was useful mainly for the foliowing three reasons.

N

A1l mathematical objects created in pre-set-mathematics can
be reconstructed as structures in set theory. More precisely,
those objects were given in set theory their canonical models so
that one could replace investigation of the original objects by
investigation of their respective models. In some cases this repla-
cement influenced the original notions and caused a modification
in accordance with the model. Real numbers, infinitesimal calculus
etc. may be taken as examples.

In pre-set-mathematics there occurred infinities of various
kinds., For example, infinity as the unlimited possibility of
constructing objects of a certain sort, infinity as an unboundedly
increasing quantity, infinity where two parallels meet, etc. All
of these kinds of infinity were reduced to actual infinity dealt
with in set theory. Set theory became a general theory of infinity.

Set theory gave to mathematics the combinatorially richest
structure, namely the structure of finite and actually infinite
sets. This caused the origin of new mathematical disciplines. Some
of them directly use the structure of sets, at least partly, such
as topology, measure theory, etc. Some others present the super~
gstructure of classical structures as for example functional ana-
lysis and some algebraical structures etec. Furthermore, set theory
offers an inexhaustible variety of different abstract structures,

Cantor set theory thus became the world of all mathematics,
i.e. the place where the whole of mathematics is located. Parti-
cular mathematical disciplines were deprived of the responsibility
for their consistency, since this responsibility was relegated



to set theory.

But this conception of mathematics hds considerable disadvan-
tages that are increasingly attracting the attention of mathema-
ticians. '

Some disciplines pursued in pre-set-mathematics had to be
considerably violated in order to include them into set theory.
Moreover, some approaches to their construction were absolutized.
Infinitesimal, calculus serves as an example, At the time of its
reconstruction set theory was not developed enough to make the most
natural modelling possible, This is because some of the leading
ldeas of infinitesimal calculus were disqualified and its subject
was extended in an inadequate manner. Immediate calculations were
replaced by proofs often hiding substantial ideas, Moreover, this
so-called ¢, -analysis does not reflect perfectly the original
infinitesimal calculus since some notions in which infinitely small
quantities are gquantified are not translatable into €, §-analysis
and must be eliminated when using functional analysis,

Set theory brought a whole scale of particular cases of
actual infinity into mathematics. But most of them cannot be rea-
sonably interpreted in the real world. Their existence is a mere
consequence of the basic conception of actual infinity in Cantor
set theory. .

Set theory opened the way to the study of an immense number
of various structures and to an unprecedented growth of knowledge
about them. This caused a scattering of mathematics. Moreover,
most results of this kind derive their sense only from the existence
of the respective structure in Cantor set theory. Mathematics based
on Cantor set theory changed to mathematics of Cantor set theory.

Cantor set theory is responsible for this detrimental growth
of mathematics; on the other hand, it imposed limits for mathema-
ties that cannot be surpassed easily. All structures studied by
mathematics are a priori completed and rigid, and the mathemati-
cian’s role is merely that of an observer describing them. This
is why mathematicians are so helpless in grasping essentially
inexact things such as realizability, the relation of continuous
and discrete, and so on.



Contemporary mathematics thus studies a construction whose
relation to the real world is at least problematic. Moreover, this
construction is not the only'possible one and, as a matter of fact,
it 1s not the most suitable from the point of view of mathematics
itself, This makes the role of mathematics as a scientific and
useful method rather questionable, Mathematics can be degraded
to 2 mere game played in ‘some specific ‘artificial world. This is
not a danger for mathematics in the future but an immediate crisis
of contemporary mathematics. It manifests itself in the fact that
most quite deep, even ingenious mathematical results are entirely
uninteresting not only for people who are not mathematical pro-
fessionals but even for other mathematicians at present working
on problems with differently situated pieces on the chessboard.

Some mathematicians recognizing this crisis react by for-
bidding or at least discrediting work in some mathematical disci-
rlines. Needless to say, such an attitude is undignified. Mathe-
matics certainly cannot be mechanically expurgated.

3, The alternative set theory

One possible way out of the crisis of contemporary mathematics
may be through an attempt to reconstruct mathematics on a pheno-
menal basis. This should result in a natural elimination of
artificial problems from mathematics, just as investigations of
the figure consisting of a half-circle together with a parabola
were eliminated from classical geometry.

But a purely phenomenal conception of mathematics would
considerably impoverish mathematics; moreover, this impoverishment
would affect the role of mathematics itself. Mathematics is a
means for surpas.ing the horizon of human experience. We use
mathematics to express thoughts preceding our knowledge and for
which later evidence is often impossible to obtain. In reconstruc-
ting mathematics we are thus obliged to accept also basic prin-
ciples for surpassing the horizon of evidence. In particular, we
do not reject logic as a means of deduction from axioms; but we
shall also present some criticism of logic.

Due to the central role of set theory in mathematics it
seems reasonable to begin by presenting a new get theory as a

10



possible basis for mathematies, just as contemporary mathematics
is based on Cantor set theory. This book is an attempt to create
such an alternative set theory. '

We shall deal with the phenomenon of infinitj in accordance
with our experience, i.e., as a phenoménon involved in the obser-
vation of large, incomprehensible sets. We shall by no means use
any ideas-of actually infinite sets. Let us note that by elimi-
nating actually ‘infinite sete we do not deprive mathematics of
the possibility of describing actually infinite sets sufficiently
well in the case that they would prove to be useful. Moreover,
we shall be able to offer several theories that could be used
for theories of actual infinity, one of them being Cantor set
theory.

The careful reader will realize that our theory is not even
fully based on the classical concept of finite sets. This is only
implicit in the present book since systematic development in this
direction would make the book considerably longer and would stress
topics not suitable for a first acquaintance with our theory.

We have the same reason for the development of our theory inside
classical logic.

_Motivations of certain approaches in our theory remind one
of the ideas of A, S. Esenin-Volpin; but the author feels unable
to present a more detailed analysis of these relationms.

We develop the alternative set theory at a time when Cantor
set theory has been considerably elaborated. This enables us to
take over various techniques and results almost literally from
Cantor set theory; they will only be interpreted differently,

Let us illustrate this by an example. In a popular booklet the
author tries to elucidate properties of countable sets. He invites
the reader into a hotel having an infinite number of rooms -
enumerated by natural numbers; all rooms are taken. In spite of
this, 1t 1s possible to accept a new guest, accommodating him

in Room 1 and at the same time move each guest from Room n to
Room'(n+1).‘Now imagine that our hotel has only one thousand rooms,
all taken. We can do the same. The new guest is accommodated in
Room 1, the guest from Room 1 is moved to Room 2 etc. Since guests
are moved successively the process will not be finished during

one day and, analogously as above, each guest will be accommodated

1



for almost the whole day. In this case the set of thousand rooms
contains a subcollection (the subcollection of all rooms to which
guests are potentially moved) that behaves somewhat like a countable
set in Cantor set theory. )

Like Cantor set theory, our theory is a non-formalized "naive"
theory. Nevertheless, some of its important fragments can be axio-
matized, Thus for example almost all results contained in the
present book are deduced from axioms that are explicitly stated.
The formal theory obtained in this way has simple models in any
of the axiomatic systems of Cantor set theory, e.g. in the _
Zermelo~-Fraenkel set theory. Some models are easily obtained from
W -gsaturated models of cardinality £¢1 of Peano arithmetic. This
proves, amongother <things, the relative consistency of our theory
W.ret. Zermelo-Fraenkel set theory. Moreover, this enables us
to investigate our theory by classical means, to take inspiration
from results of model theory and to adopt various proof techniques.

When our theory is understood as a formal system, some of its
models can be identified with a rather particular case of Robin-
son’s non-standard analysis, which gives further important sources
of proof techniques.

Finally, our theory can be used for a rather particular case
of the theory of semisets. This fact also gives us varicus notions
and techniques.

A1l of these sources of inspiration have been substantionally
utilized.

One can object that our theory as a formal system 1s only

a restriction of contemporary mathematics. But this objection is
 as irrelevant as the objection that the general theory of relati-
vity restriets itself only to one geometry from Klein’s classifi-
cation of geometries.

A formal treatment of our theory can simplify our work in
various aspects. But the reader should keep in mind that our theory
is not a formal system and that axioms presented in this book do
not form an exhaustive list. Only those axioms really used ere
presented. For example, in Section 6 of Chapter I we present a
principle (not exactly formulated) for the acceptance of new
axiome. Axioms accepted on the base of this principle make con-

12



struction of models of our theory in usual set-theoretical systems
rather difficult, if not impossible.

4. Mathematics in the alternative set theory

If our theory is to be really an alternative to Cantor set
theory we must show that it can replace Cantor set theory in its
position in mathematics. Even though the main part of the present
. book is devoted to the development of the theory itself, the prin~
cipal aim of our work is to develop mathematics inside it.

We have already mentioned the fact that our theory is a general '
theory of infinity. After having read the first two chapters the
reader will see that objects of pre-set-mathematics can be con-
structed just as well in our theory as in Cantor set theory. Some
doubts might concern only infinitesimal calculus,

Pirst, it is immediately clear that one could develop the
€, § -analysis in our theory; but functional analysis would be
already rather unnatural. However, it is not our intention to
develop infinitesimal calculus as the €, § -analysis, In our theory,
we have for this purpose more natural means, and also functional
analysis can be reconstructed in a form more natural for our
theory. At present more variants of infinitesimal calculus are
being elaborated and it is not yet clear whicK is the most natural
one. This is why infinitesimal calculus has not been inciuded in
this book,

\

Parts of mathematics that were developed after the origin
of set theory must be subjected to critical analysis concerning
their very foundations. It is necessary to 1lock for new mathema-
tical definitiohs of notions that have already been mathematically
formalized. The chapter on topological shapes is an example of
this, Our present experience is that a mechanical adaptation of
notions used in Cantor set théory often retards the development
and hides simple natural approaches. Here is the main difference
between the work in our theory and in Robinson’s non-standard
analysis. Non-standard analysis is not an informal theory and it
derives its raizon d etre from Cantor set theory. Its aim is to
enrich Cantor set thsory by new techniques. Notions of Cantor set
theory are not subjected to any criticism.

13



Qur theory makes possidble a natural mathematical treatment
of notions that either have not yet been defined mathematically
or that have been defined in an unsatisfactory way. As an example
we have here the chapter dealing with motion. We shall see that
the development of mathematics in the alternative set theory
quickly leads to problems for which contemporary mathematics
presents no appropriate means for solution. Thus it will be neces-
sary to look for new, unusual techniques,

" Having obtained some knowledge of the alternative set theory,
the reader will discover various possibilities .of development
of particular mathematical disciplines in it. Several such possi-
bilities have been investigated in the Prague seminar of the al-
ternative set theory, and they were subjected to severe criticism.
This book contains only some examples elaborated by the present
author.

Restriction of mathematical problems and concentration on
problems posed by the alternative theory is drastic, The spirit
of the alternative set theory seems to regulate mathematical
problems "in medias res". To solve such problems is by no means
easy. If our way or a similar way were shown to be right, then
this fact would probably lead to a considerable restriction of
mathematical production.

14



Chapter 1

Introduction to Alternative Set Theory

The mathematician creates objects and interrelates them.
He does this in various ways, which we shall not attempt to des-
cribe in full generality.

The objects and relations that form the subject of mathema-
tical study exist in our minds. For various purposes mathematicians
create complex worlds of such objects. Our study will be devoted
to a particular world of mathematical objects.

We shall describe and investigate our world of objects in-
formally. But we shall try to choose formulations admitting easy
formalization since some formalization will be desirable in later
stages of the development of our theory. (By a formalization we
‘mean a formal axiomatic system corresponding to the informal theory
in question or at least to some important fragments of that theory.)
In particular, properties given to our world in the course of its
creation will be spelled out as axioms. Other properties will then
be proved from the axioms, Some axioms will be formulated in a way
which does not admit a mechanical literal formalization; nevertheless,
they will serve as an important orientation. :

Objects will be denoted by letters, possidbly indexed, or by
other standard symbols, X = Y means that X and Y denote the same
object and is read "X equals Y". X # Y means that X and Y denote
distinct objects.

In order to simplify notation we shall use logical connectives
&,V, =>, ® ,7 and quantifiers 3, V, 3! . The quantifier 3! is
read "there is exactly one", Furthermore, we shall use the notation
y (X) and y(x1, <esy X ] to denote properties of objects and rela-
tions among objects, respectively, (X and X1, cony Xn are variables
varying over objects.)

15



The membership relation will play a fundamental role in our
theory. This relation as well as the obJects of our world will be
introduced later, but we make already now the convention that
the symbol € denotes the membership. We read X¢ Y as "X ig a member
of ¥" or, equivalently, "X belongs to I", or "X is an element of Y".
We write X ¢ Y if X does not belong to Y. We shall occasionally use
bounded quantifiers (3Xe Y)(...] as an abbreviation for (IX}(X¢e Y&..
and [VXe Y){...) as an abbreviation for (YX)(XeY = eed) o |
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Section 1

Sets are specific objects. We describe their construetion
and the construction of the membership relation between objects
and sets.

First, we assume that the empty set (having no elements) has
been constructed. Thus there is an object that is a set and has
no elements. This set will be denoted by @, as usual.

Other sets will be constructed as follows. Assume that some
objeets have been constructed earlier and that we can arrange these
objects into a 1list -or, at least, such a list can be imagined.
Under these conditions, a new set is said to have been constructed,
namely the set of all obJects from the list; this set is distinct
from each object from the list. The new set does not depend on
the order of the elements in the %ist but is uniquely determined
by its elements. Thus if X and Y are sets and have the same members,
then X = 7,

Thus our concept of set is similar to Cantor’s, but all our
sets are finite from'Canto;'a roint of view. We shall not admit
the fiction of actually infinite sets. '

If X4, «oey X, is & list of objects then{Xp ceey xn} deno-
tes the set containing exactly all objects x1, ceey Xn .

The universe of sets is formed by sets constructed iterati-
vely from the empty set.

We do not claim that the universe of sets contains all
poesibly constructible sets. Our restriction to the universe of
gsets in the above sense is not substantial for the purposes of set
theory. We have in this universe enough sets to code various
objects not belonging to it and in this way reduce problems con-
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cerning more general sets {i.e. sets obtainable by our construction
from arbitrary objects) to problems concerning the universe of sets.
On the other hand, our restriction has several technical advantages.

We shall use lower-case letters to denote sets from the univer-
se of sets., Thus speaking of an object x we automatically assume
that x belongs to the universe of sets. The possibility of den6%ing
sets by other symbols is of course not excluded., The faet that X
is a set is denoted by Set[X). -

Now we are going to formulate axioms which will describe gome "
basic properties of the universe of sets. We shall try to deduce
other statements (or their negations) from our axioms rather than
to decide their truth directly from the basic intuition behind the
universe of sets,

Axiom of extensionality for sets
(Vx){Vy)l x=y alVz)(zex = ze 7).
For any sets x and y, x equals y iff x and y have the same elements.

Axiom of the empty set
(Ax) VY)Y € x).
There is a set having no elemenfs.
By the axiom of extensionality, there is exactly one empty set.

Axiom of set-guccessors

(vx)(Vy{3Z(Vu){uez = (vexvu =y)),
For any sets x and y there is a set z having exactly the following
elements: y and all elements of x. By the axiom of extensionality,
z is uniquely determined by x and y; we shall write z = xLJ{y}.

Note that ¢u{y} ={y}, {x1}u{x2} = {x1, xz}, ete,

These three axioms express facts stated, at least impliecitly,
in the course of the construction of the universe of sets. Thus
if our construction is not senseless the axioms are true. Axioms
of this kind are called analytic axioms, -

We shall now consider set-theoretical properties and relations,
i.e. properties and relations expressible by means of set-formulas.
Set-formulas are expressions constructible by means of the following

rules:
1/ x =y and x€ y are set-formulas,

2/ 1fy andy are set-formulas then (y & 7)' (pv W]’
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(o =yl, (payl,afp) (3x)p , (Vxly are set-formulas.

3/ If x and y are replaced in 1/, 2/ by other lower-case
variables then the resulting formulas are also set-
-formulas,

'We shall now formulate the last axiom concerning the universe
of sets, the axiom of induction. By accepting this axiom we sub-
ject our sets to the laws valid in Cantorian set theory for finite
sets.

Axiom of induction
Let ¢(x) be a set-theoretical property. Then
p(8)&lVxIVYP (x) = p(xu{y})) = (Vx)p(x)
(If ¥ holds for § and whenever ¥ holds for x then ¢ holds for
xu{y}, then g holds for all x.)

Here we do not have a single axiom but an axiom schema,
By substituting various particular set-formulas for V we obtain

particular axioms.

The axiom of induction is not an analytic axiom since by
accepting it for sets we ascribe to them various properties that
cannot be directly perceived from the definition. Such properties
agree-with the classical theory of finite sets but they are
problematical. The axiom of induction is a postulated hypothesis
about finite sets. Axioms of this type will be called hypothetical
axioms,

Even if we did not assume the axiom of induction, we could
reach the same goals; but various parts of the theory, that can
be easily handled using traditional techniques, would become tech-
nically quite complicated. Thus we assume the axiom of induction
mainly for the sake of convenience. We shall show later how to get

rid of it.

For the present, we shall not assume any other axioms for
gsets. At the end of this section we shall assume one more axiom,
the axiom of regularity, which manifests the fact the empty set
is the basis for the construction of the universe of sets. But in
what follows we shall not need the axiom of regularity.

Some properties of sets and relations among sets are rather
frequently used and therefore deserve special notations and names.
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For example, we define
xSy w{Vzllzex => zey) ,
(x is a subget of y iff each element of x is an element of v
xcy =xcey&kx ty T ,
(x is a proper subset of y iff it is a subset of y distinct from y).

In this book we shall omit trivial ‘and routine theorems about
sets; knowledge of them will be assumed. For other theorems, whose
proofs are well known, we shall either omit the proof or give only
some hints,

Theorem. For any sets x and X4 there is a set z that has
the following elements: all elements of x, all elements of x4 and
no other elements. '

Proof. Our theorem can be expressed formally as follows!
(Vx)_(Vx1)(3 z)Vu){uez = uexvuex,).

Take an arbitrary Xqe Let y(x) be the set-formula
(3z)(Vu){wez = ue xvuexy) . First, p(P) is evident, Assume p(x)
and let y be arbitrary. Let z satisfy (Yu)(uez = uexvuexf
Then we have (Vu)(ufzu{y} a ue,xu{y}vuex1), thus y(xu{y})
By the axiom of induction we have (Vx)p(x), which concludes
the proof.

By the axiom of extensionality, the z of the preceding theorem
is uniquely determined by x and x,. Hence we can define the opera-
tion of union of two sets as follows:

z = xux, =(Vu)(uez s uexvuex,),

Note that this includes the operation xu{y} defined above
as a particular case,

Theorem. For each x there is a z whose elements are exactly
all elements of elements of x.

Proof. Formally, we have to prove:

S—

(Yx)(3z)(Vu)(ve 2 = (Ivex)(vev)).
Let y’(x) be (32)(Vu)(uez :(Hvex)(uev”. Assume y(x)

and let y be arbitrary. let z satisfy (Vu)(uez = (Hv e’x)(uev)).
Then (Vu)(ue ZUY = (3v exU{y})(uev)), which implies sv(xu{y}).

By extensional'ity, z is determined uniquely by X; hence we
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can define the union of a pet:

z =Ux = (Yu)(uez = (3v)(u‘£v&v€x)).

Theorem. Let y?(u,v) be a set-formula and assume (Vu )(Hlv) ,a(u,v).
Then (Vx)(T2)(Vv)(v ez z(Juex) ,o(u,v)). In words: Assume that
for each u there is exactly one v such that V(u,v); call this v
the p-image of u. Then for each x there is a z whose elements are
exactly the (/-images of elements of x,

Strictly speaking, this is not a single theorem but a theorem-
-gchema, called the replacement schema. Substituting various set
formulas we obtain particular theoreme. Our proof will conmsist
in giving instructicns for proving each particular case.

Proof. Let yl(x) be the set-formula Gz)(Vv)(ve Z 3 (auex),o(u,v».
First, y/(¢) is evident. Assume p(x) and take a y. Iet z satisfy
(Yv)vez = (Juex) y(u,v)) . Let y(y,y1). Then
(Vv)(v €z U { y1} F (Hu €ExV {y}))ﬂ(u,v)), which implies ,u (x v {y}).
By the axiom of induction we have Vx y!(x).

Theoren. (Vx)(Jz)(¥ u)(vez = ucx).
In words: For each x, all subsets of x form a set z.

. Proof. Let f(x) be (32)(Vu)(u€z = ulx), Assume y(x) and
take a y. let z satisfy (Vu)(ue zZ = qu). Note that
(Vu)(}!v)(v = uy {y }) . Consequently, the replacement principle
gives a set z, such that (Vv)(v €zy = (gu)(ue Z&V = uu{y})) .
Then _(Vu}(ue:zuz1 xuix U{y}) » which implies y(x u{y;) .

This theorem enables us to define the power-set operation:
z = P(x) 2 (Vu){uez = ugx).

The following is a theorem-schema.

Theoren., ( Comprehension schema.) Let y(u) be a set-formula,

Then (Vx)(JZ)(Vu)(uéz =z ueExk y(u)). In words: For each x,
the elements of x satisfying 4 form a set z,

Proof. Let Y (x) ve (Jz)(Vu)(uez = uexs p(u)). Assume
su(x) and let y be arbitrary. let z satisfy (/u (uez z=uéExk sﬂ(u)).
If y(v then we set z, = 2 u{y} ; otherwise we set z, = z ,
Evidently, we have (Vu\)(uﬁz1 z u€xo { y}-'& )o(u)), which implies
()y(xu{y}) , which concludes the proof,
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Given f(u), the extensionality axiom guarantees that, for
each x, the z of the theorem is unique. Thus we can make the
following schema of definitions:

Por each set=formula (u), we set

z = {uex; tf(u)} e(Yv)(ves = jEx &}o(v)).

Some particular cases deserve spe‘cific notatiorns and names;
for example, we set -

xny ={uex; wey},

x-y={uex; ufyt.

Sets x and y are called disjoint if xny = 8.

We can now prove with ease that in the universe of sets there
is no set containing all sets from that universe.

Theorem, ﬂ(ax)(Vy)(yex), i.e. no set conta;lns all sets as
elements.

Proof. Assume (Vy)(yex) and set v = {uéx.&u ¢ u} . Then
both ve€v and v € v, a contradiction, '

Since {X,Y} is the same set as {Y,X} for arbitrary objects
X and Y, we can call {X,Y} the unordered pair of objects X and Y,
The ordered pair of X and Y is an object which is determined
uniquely by X and Y in this order, and which conversely, determines
uriguely X as its first component and Y as its second. This can be
achieved, e.g., by setting

(x,1) = {{x}, {x1}}.
In particular, in the universe of sets we define

() ={{x}, {x3}p-

The following theorem shows that this is a sound definition
of the ordered pairs

Theorem. <x,y> = <x1,y1) B (x = x1)& (y = y1) .
The ordered triple is then defined as follows:

(xy,2) = (x (V7)) .

Ordered guadruples, quintuples etc. are defined similarly.'

Now we are ready to define the cartesian product of two sets.
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xxy = {ue(B(xuy)) 5 (v, ex)Tv,ey)(u =(vyov )}
Fote that if v € x and v, €y then {v1 ,vz}.e. P(xuy) and thus
{vqsv,) € P(P(xuy)) . Thus we have

uexxy = (Ivy¢ x)(]vzé yv)(u = (v, ,v2>).

We write xz instead of x x x.

Having introduced ordered pairs as particular sets we can
cdefine the set-theoretical notions of relation and function. We make
the following definitions:
Rel(x) = (Vze x) (& is an ordered pair)
@ is a relation),
Fne(x)= Rel(x) & (Vu,v,w) ((v,») € x &(w,udex = va w)
(x is a function).
Domain, range etc. can be introduced for arbitrary sets, not just
for relations. We make the following definitions:
don(x) = {uelUUx; (Av){v,wex)},
rng(x) = {ueUUx; (3v)(<n,v)€x)$
(domain and range).

Observing that <u,v) € x implies ﬁeUUx and vée UU x we obtain
immediately the following:
(1) dom(x) is the set of all u such that { v,u) ¢ x for some v,
(2) rng(x) is the set of all u such that { u,v) ¢ x for some v,
If £ is a function and u €dom(f) then f(u) denotes the unique v
such that {v,u) € f, i.e. v = £(u) iff {v,u)ef.

o ={u€.P(P(UUx)); (3v1,v2)(u -<v1 ,v2)&<v2,v1> € x)}
(the inverse relation)
x}y = xn(rng(x)« y) ,
(the restriction of x to y) .

Obviously, x'1 is the set of all pairs <v1 .72> such that
{ v2,v1) € x ; and x} y is the set of all pairs ¢ ¥4 ,v2) € x such
that v,€y.

. Using the set-theoretical notion of a function we can define
equivalence ( equipollence ) and subvalence between sets. We shall
speak of set-theoretical equivalence and subvalence or, briefly,
of set-equivalence and set-subvalence. The general notions
equivalence and subvalence will be introduced in Section 2. We make
the following definitions:

23



A function f is one-one if £~' is also a.function.

x2y (x is set-equivalent to y) iff there is a one-one
function f whose domain is x and whose range is y.:

xgy (x is set-subvalent to y) iff there is one-one function
f whose domain is x and whose range is a subset of y,

x%{y (x is strictly set-subvalent to y) iff x.@.y but not
x2y.

These notions are commonly known and there are various well- '
~known theorems concerning them. We restrict ourselves to the
following three:

Theorem. If y is a proper subset of x then y is strictly
subvalent to x.

Proof. We prove (Yx)(Yucx)(ufx). Tet y(x) be the set-
-formula ﬂ(au)(u cx &uf x). Assume (f(x} and let y ¢ x. Let u be
a proper subset of x v y} such that u& xv {y}. ‘Take a one-one
mapping f of x v {y} onto u. First, assume utx, Then
u - {f(y)} ¢ xand £l x i8 a one-one mapping of x onto u —{f(y]} ,
a contradiction. Thus we have yeu so let f£(z) = y. Put '
g =(fh(x - {z})) u{{(£(y), 2)}. Then g} x is a one-one mapping
of x onto xnu, and xnu is a proper subset of x, a contradiction.
We have proved Y(x v { y }). '\

N
Pheorem. If xXy and y<x then x2 y.
A
Theorem. X%y or y<x .

' A Ay
Proof. Let «f(x) be the set-formula (Vu)(u $xvx$u). We prove
(Vx) y(x) by induction. Assupne f(x)and let y¢x. Given u, we have
ulx or x$u. In the first case we obtain u<x u{y} , hence assume
x< u. Consequently, there is a uysC u such that x%£ Uy, Jet vegu - 4.
We have xu{y} 2 u, u{v} s thus xu{y}gu, since u1u{v}s_u,

Theorem, For each non-empty x, there is a ue x which is a mi-
nimal element of x with respect to inclusion, i.e. there is no vex
which is a proper subset of u,

Proof (by induction). Let ((x) be the set-formula
x # 8 => (Juex)(V¥v ex)(-vvcu). Assume }0(:) and let y & x, If
x = @ then x v {y} has only one element, which is evidently minimal,
Thus let x # § and let u be 2 minimal element of x. If ycu let
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u =y 3 otherwise let u, = u, Obviously, uw, is a minimal in
xXu { v}. ‘

The following theorem is proved analogously.

Theorem. Each non-empty set has an element whilch is maximal
with respeet to inclusion,

- Fow we formulate the axiom of regularity. This will complete
our list of axioms concerning only sets, but the axiom of regularity
will not be used in the remaining sections of Chapter 1. It is a
hypothetical axiom-schema,

Axiom of regularity
Let y(x) be a set-formula. If (Ix)y(x) then

(Hx)('y(x) &(Vyéx)-u)p(y)) .

The conclusion in words: there is a set x satisfying ¥ such
that no element of x satisfies ¢. Intuitively, x is the first set
satisfying ¢ obtained in course of the construction of the universe
of sets.

Theorem. For all sets u, u ¢ u.

Proof. Let 470(x) be the set-formula x = u, Evidently,
(Hx).?(x). Let x be such that ?(i)& (Vyex)—jy(y), then
x « u&(Vyex)(y # u), i.e. (Vyeu)(y # u), which gives u ¢ u.

-we can analogously prove that there are no x and y such that
Xey& yex, no x, y and z such that x€y, yez and z¢ x, etc.

The axiom of regularity can be equivalently replaced by
the following.

Axiom of €-induction
Let (f(x) be a set formula, If (Vx)[:(Vye x),ﬂ(y) => f(x)]
then (Vx)y(x).

To close this section, we show the equivalence of the axiom
of regularity and the axiom of €=-induction.

 Pirst, assume the axiom of regularity. Let (x) be a set-

-formula and assume (Vx) [_-(Vye x),ﬂ(y)=7 y(x)] Let y/(x) be
—:Sa(x). Assume that there is an x not satisfying ¢, i.e. (Hx)yj(x).

By regularity, there is an x sucht that qz(x) and( y”)"’y/(X),
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ie. (Vyex) (f(x), which implies Y(x), a contradiction. We have
proved (Vx)g(x).

Couversely, assume the axiom of ¢ -induction, Let (f( ) be
a set-formula and assume (Jx)y(x Furthermore, assume
(Vx)(p(x) = (Iyex)p(y)). Let y(x) ve p(x). Then
(Vx) [’nye x)y/(y) => p(x)] , hence (Vx)y (x), which contra-
dicts to (3Ix ,0 x) This concludes the proof.
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Section 2

Classes

Each property of objects can be considered as an object.
A property of objects understood as an object is said to be a class.
Classes are further specific objects of our study. The fact that
an object X 1s a class is denoted by Cls(x).

1t Y(X) denotes a property of objects then {x;y(x)} denotes
this property as a class; thus {x; (f(x)} denotes a specific
object.

For reasons analogous to our reasons for restricting our study
of sets to the universe of sets as described above, we restrict now
the domain of classes we are going to study.

The extended universe is formed by classes of the form
{_x; _(p(x)} where 7(::) is a property of sets from the universe of
sets, This construction of the extended universe enables us to
formulate the following axiom.

Axiom of existence of classes
For each property y(x) of sets from the universe of sets,
the extended universe contains the class {x; ,p( x)} .

The extended universe depeﬁds on our possible restriction
of properties admitted in the axiom of existence of classes. Such
a restriction is necessary e.g. if we formalige our theory. But
at present we shall not make any restriction of the extended universe.
Let us stress the basic fact that we shall not confine ourselves
to set-theoretical properties (i.e. properties described by set-
-formulas) in the axiom of existence of classes,

The membership relation between objects and classes will be
now defined for the particular case of classes from the extended
universe.
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If X is aﬁ object and if Y is a class from the extended universe
(thus Y is a property of sets from the universe of sets) then Xe Y
1ff X belongs to the universe of sets and X has the property Y.

A considerable technical simplification is achieved if sets
from the universe of sets are identified with certain classes, A
set y can be identified with the property "x is an element of y",
In this way the universe of sets becomes a part of the extended
universe. Our convention is expressed by the following axiom:

Axioms of sets as particular classes

(Vx) c1s(x)

(in words: each set is a class).

Axioms of the universe of sets formulated in the preceding
section as well as all results obtained there become a part of the
theory of the extended universe,

The first natural question is what does it mean that two
classes X and Y from the extended universe are equal, Evidently this
means that X and Y are identical properties. Here one could make
various fine distinctions by considering also the syntactic form
of the expression of a property. We shall not do that since it is
not our aim to develop our study in that direction., We decide that
classes X and Y are equal objects if and only if they have the same
elements.

Since we shall deal mainly with classes from the extended
universe we shall use letters X, Y, ... to denote classes from the
extended universe unless explicitly stated otherwise., Similarly,

" we shall say simply "a class" instead of "a class from the extended

universe®,

Thus our concept of identity of classes can be described by
the following axiom:

Axiom of extensionality for classes
(VX,Y) (X = Y & (Yu)(ueX = uey)),
In words: Two classes are equal iff they have the same elements,

Note that all axioms formulated {ill now in the present section
are analytic,

28



A class that is not a set is a proper class. Note that if X
is a proper class then the set {x} ia not in the universe of gets,

If ,o(x1, ceey xn) is a formula‘(not necesgsarily a set formula)
concerning sets then we write {(x1. crey Xp D y(x1, veey xn)},
instead of {x; (3:1, cies xn)(x =(X{yeeerX) & ,0(x1,...,xn))}.

If f(x) is a set formula then we say that the class {x; :f(x)}

is gset-theoretically definable, Since y -{x; xey} s ¢ach set is
set~theoretically definable.

The universal class 1s the class V = {x; x = x5, Evidently,
V is set-theoretically definable and we have (Vx)(xéV). If follows
that V is a proper class (not a set).

In Section 1 various notions concerning sets were defined. We
now generalize these definitions to definitions of notions concerning
classes and add some new definitions. »

XcY = (Vu)(ue,x = ueY) (inclusion)
IcY s XCYEX $4 Y : (proper inclusion)
XnY = {u; neXguey} ~ (intersection)
XuY ={u; ueXvuet} (union)
X-Y ={u; ueXgué v} (difference)
IxY ={{u,v); uexgv ey} (cartesian product)
X2 = XxX " (Cartesian square)
dom(x) = {u; (Iv){v,ude xi (domain)
rog(X) = {u; (Iv)u,v) ex (range )
1! - {{u,v>; {v,udex} {converse)
Ux = {u; (gvex)(uev)} (union)
NX = {u; (Wwex)(uev)} (intersection)
P(x) = { u; u X} B {power)
XPY = Xa(VxY) (restriction)
Y = {u; (Iver)(<u,vdex (image)
- Rel(Xx) s X& V2 : (relation)

Pnc(X) = Re1(x) & (Yu,v,w) ({ v,ud e Xg{w,ud e X = v = w)
: (function or mapping)

If P is a function and xedom(P) then F(x) denotes the unique
y such that <y,x> €F (the image of x with respect to the function
F).
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If y(x) is a formula concerning classes then n{ Xy x)}
denotes the class {u; (Vx)( (X) » ueXx)} and similarly
U{x; ¢(X)} denotes the class {w; (3T)( p(X)& u €x)} . We shall
often use also other expressions, e.g. {xny, ?(x,y)} denotes
the class { z; (3 x,y)( (f(x,ﬂ& zZ=3x0Y) } ete.

If F 1s a function, dom(F) = X, rng(®) = Y and F~' is also
a function we call F a one-one mapping of X onto Y. We further
define:

X is equivalent to Y (notation: X= Y) if there is a one-one
mapping of X onto Y; X is subvalent to Y (notation: x2 Y) if there
is a one-one mapping of X onto a subclass of Y. X is strietly
subvalent to Y if XXY but not X= 7Y,

We have obviously (Vx)(Vy)(x2y => x=y) and
(Yx)(Vy)(xXy => x3y). We shall see later that these implications
cannot be reversed and that the following cannot be proved:
(Vx,7)(x%y = x<73).

If R1 and R2 are relations and F is a mapping then F is
called an igomorphism of ( Ay, R1) onto 4,, R2> if F is a one-
=one mapping of A1 onto A, and the following holds:

(Yx,y€8) (< x,5 D €Ry = {F(x), F(y)) eR,).

We call {Ay,Ry? and {4,,R,> isomorphic if there is an
isomorphism of (A, »Ry) onto <A2'R2>

A relation R is an ordering of A (in other words, A is ordered
by R) iff R is reflexive, antisymetric and transitive on A, i.e.

(Yxea) ((x,xDeR),
(V7 eA)( 17> € RECT XD ER m> x = ) 4
(Vx,y,2 eA)(( 5y D ER&(Y.Z) €R =>{x,2DeR).

R is a linear ordering of A if, in addition, the following
holds:
(Vx,y €a)({x,3 D €Rv{ 7,2 ) €R).

R is 2 well-ordering of A if R is a linear ordering of A and
each non-empty subclags of A has a first element, i.,e,

(Y2)(p # ZEA =y (Ixez) (VyéZ)((x,y)e R)).
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We shall write We(A,R\) if A is well-ordered by R.

Let R be a linear ordering of A, A subclass B of A is a gegment
of A w,r.t. R 1ff B contains with each element all ita predecessors,

t.e. (YyeB)(Yxea)((xy) eR = x¢B).
Theorem. If We(A,R) and BEA then We(B;R).

Theorem, Lgf We(A,R). A class B is a segment of A w,r,t. R
1ff either B = A or there is an x €A such that B = (R¥x}n4 )~ {x}

Theorem. If We (A1 +Ry) and We (A2,R2) and if F, G are isomorphiama
of {Aq,Ry) onto { 4,,R,) then F = G.

Proof. Assume F £ G, Let x be the R; = first element of A,
such that F(x) £ G(x); let { F(x), G(x)) €R, and let yeA, be such
that G(y) = F(x). Since { G(y), 6(x})> ¢ R,, we have { y,x) € R,,
which implies F(y) = G(y) hence F(y) = F(x) and y = x, which is
a contradiction, '

Theorem. If We(A,R) and B is a segment of A w.r.t. R such that
A # B, then ( A,R? and { B,R)> are not isomorphic.

Proof, Assume that F is an isomorphism of { A,R) onto { B,R).
If'x€A - B then x £ F(x) and { F(x), x) € R, Let x be the R-first
element of A such that x # F(x) and { F(x), x) € R. Then F(x) is
R-less than x, F(x) # F(F(x)) and { F(F(x)), F(x) ) € R, which is
a contradiction.

Theorem, If ble(A1 ,R1) and We(Az,Rz)' then there is an Ry -seg-
ment B, of A, such that {B,,R, ? and (A,,R,) are isomorphic or
there is an Ry~segment B, of A, such.that ( Aq,RyD> and { B,,R,)»
are isomorphic. '

Proof. Let (H) be a formula saying "dom(H) is an R,-segment
of A, rng(H) 1s an R,-segment of A, and H is an isomorphism of
{ dom(H), Ry > onto ¢ rng(H), R,) ". By preceding theorems,
p(R) & p(H,) implies that HEH, or HySH, If F = U{E p(B)},
then evidently (f(F). It remains to prove dom(F) = A, or rng(F) = A,.
Assume the contrary, let x be R,~first in &, - dom(F) and let y be
Ry-first in A, - rng(F). Let F; = Fu{{y,xD} , then p(F,),
hence F1EF, which implies xedom(F), ye€ rng(F) - a contradiction,

The following two theorems concern only the universe of sets,

i
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Theorem. For each set x there is a2 linear ordering r of x such
that r&x®.

Proof by induction. For x = § take r = §§ , Assume that r&x?

and r is a linear ordering of x; let y ¢ x. Then
r’=ruU [(xu§y} x { y}] is a linear ordering of xu{y} and

r e u{y})?.

Theorem. If x is linearly ordered by r and z is 'a non-empty
subset of x then 2z has an r-first and r-last element,

Proof. The theorem is trivial for x = @, Assume that the
theorem holds for a set x; let y £ x, let r be a linear ordering
of x u{y} and let z be a non-empty subset of xu{y}. If z = {y}
then y is both the r-first and the r-last element of z; otherwise
znx is non-empty and the induction assumption gives a Y€ B8NX,
r-first in znx. If yfz or if y is not an r-first element of g
then y, is the r-first element of z. The existence of a last element
is proved analogously.

Caution., The preceding theorem does not say that each relation
r which is a set and linearly orders a set x is a well-ordering of
x. It says only that each non-empty subset of x has a first element;
the existence of a non-empty subclass of x which has no first
element (and is not a set) is not excluded. See the next section.
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Section 3

Semisets

What we have done until now is in no conflict with Cantor’s '
set theory. But in introducing and investigating the notion of a
semiset we are leaving the Cantorian set theoretical world.

A semiset is a subclass of a set. We write Sms(X) for "X is
a semiset". Thus '

Sms(X) = (Hy)(XEy).

Bach set is trivially a semiset. A proper semiset is a semiset
which is not a set, We are going to show the existence of proper
semisets.

Professor Charles Darwin teaches us that there is a set D
of objects and a linear ordering of this set such that the first
element in that set is an ape Charlie, each non-first element is
a son of the immediately preceding .element, and the last element
is Darwin himself., The collection A of all apes belonging to D is
not a set; otherwise A would have a last element, But, as everybody
knows, sons of apes are apes; thus every member of D, including
Mr. Darwin, would have to be an ape. Elements of D can be coded in
the universe of sets, e.g. by #, {#} ,{{¢}}, «ss etc. in such a
way that D itself becomes a set from the universe of sets. The class
of codes of all apes (element.of A) is a proper semiset.

Our example is by no means isolated. Take the'property "to be
a living man", This is undoubtedly a useful and frequently used
property. But we could hardly make a list of all living people.
Even if we disregard technical difficulties, such a list is im~
poesible since there is no crisp boundary between not yet born and
already born, nor between yet alive and already dead. On the other

hand, we can easily imagine a list (set of'objects) containing
(among others) all living people.
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Examples of proper semisets have been known for a long time
but they were held for anomalies, as e.g. the "bald man paradox®.
But we meet proper semisets whenever in considering'a property of
some objects we emplasize its-intension rather than its extensioh.
The reader could himself supply various examples (“to be a tadle",
"to be a book", "to be a beautiful woman® ete.):

Note that also all natural numbers that cannot be deseribed
by an English sentence having at most a thousand words form a proper
gemiset and therefore we cannot claim that this collection has a
least element (cf. below). )

For various, purposes proper semisets can be approximated by
sets, This is the subject of approximation theory. Incorrect
approximations or disregarding the existence of proper semisets can
lead on various levels to questions of the type "which came first,
the chicken or the egg".

Thus the existénce of proper semisets is a consequénce of the
axiom of existence of classes. However, when formalizing our theory
or applying it to a partibulaf sitvation we shall restriet the
family of properties admitted in the axiom of existence of classes,
It could happen that we would eliminate all proper semisets. This
is why we guarantee the existehéé of prbper semiset by an axiom,,

Axiom of existence of;proper gemigets
There is a proper, semiset., In symbols, (3X)(Sms(X)& — Set(X)).

Theorem. If X and Y are semisets then the following classes are
also semisets: XnY, Xu¥, X - ¥, Xx¥, UZX, P(X), dom(X), rng(X),

1, "z,

. Theorem. If X is a set-theoretically definable and is a semiset
then X is a set. (Immediate by the results of the preceding section).

In particular, the universal class V is not a semiset.

x-X-x .

A mathematical theory that aims to replace Cantor’s set theory
in its role in mathematics must be suitable for the study vroblems
of infinity. Infinity is brought into our theory by means of semi-
sets., But this kind of infinity is different from the accual
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infinity in Cantor’s sense. Our infinity is a phenomenon oceuring
when we observe large sets. It manifests itself as absence of an
easy survey, as our inability to grasp the set in its totality.

One could suspect that proper classes that afe not semigets
supply an actual infinity, e.g. the universal class V, But this is
not the case. Such classes can be understood as merely potentially
infinite or,'altérnatively, can be held for semisets ~ subclasses
of an immense set that has not been included into our universe of
sets., Our considerations could be restricted to such a large semi-
set from the beginning.

Classes that can be perfeetly grasped, i.e. have no subeclass
which is & proper semiset, are finite. Thus we make the following
definition: A class X is finite (notation: Fin(X)) iff each sub-
class of X is a set. Classes that are not finite are called infinite.

. Obviously, each finite class is a set. Thus all proper classes,
in particular, all proper semisets, are infinite. Note that "X is
finite™ 1s not set-theoretical so that it cannot be proved that all
sefé are finite., The axiom of existence of proper semisets implies
that there are infinite sets. ( Caution: we stréss the fact our

‘“notion of infinity differs from the usual Gantorian notion. Recall
that all sets are finite in Cantor’s sense.) '

Since the empty set is its own unique subclass, @ is finite.
Similarly each one-element set {x} is finite ( it has exactly two
‘subclasses, $ and {x}). If X is finite and Y is a subclass of X
then Y is also finite.

Theorem. If x and y are finite then xuy is finite. '

Proof. Let XSxuy. Then X = (xnX)u(ynX). By the assumption
both Xnx and Xny are sets. Thus X is also a set.

Theorem (induction for finite sets) Let Z be a class such
that PeZ and for each x¢€Z and each y, x u{ y} € %Z. Then each
finite set is Ain Z. :

_1_’_11)3;. Let x be a finite set and let < be a linear ordering
of x (<is a set). Put ze¥. = (zex &{wéx, wez b€ Z ., We claim
Y = x. Since YSx and x is finite, Y is a set. Assume ¥ # x and
let z be the first elemeént of x ~ Y. Then {wex; w<z} € 7 and
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{wex; Wz} = {wex; w<z b u {z} belongs also to Z, a contra-
diction. Thus Y = x and if 24 is the last element of x we have
x ={wex; w<z.p € B

Theorem. Let F be a function whose domain is a finite set.
Then PF is itself a finite set.

Proof. Let Z be the class of all sets x such that each function
F whose domain is x is a finite set. We prove using .he preceding
theorem that Z contains all finite sets. Evidently @ e 2. Suppose
x€Z and y ¢ x. Let F be a function such that dom(F) = xu {y} .
Then F = F} xu{(F(y), y)} . By the assumption, PM x is a finite
set; {( F(y), y)} is obviously a finite set. Thus F is a finite
set. This proves x u{’y} € 3.

Theorem., If x is a finite set and x=X then X is a finite set
and x2X.

Proof. Let F be a one-one mapping of x onto X. By the preceding
theorein, F is a set; consequently, x%£X and X = rng(F) is a set., It
remains to prove that X is finite. Let Y be a subclass of X, Put
Z ={uex; P(u)eY} . Since ZSx-and x is finite, 2 is a set; since
Y = rng(F} Z) and both F and 2 are sets, Y is also a set. Con-
sequently, X is a finite set.

Theorem, If x and y are finite sets then (1) xxy iff x2y;
(2) xLy iff xgy; (3] x<y iff ny. The following three theorems
are proved using induction for finite sets.

Pheorem., If x is finite then P(x) is finite.

Proof. Put Z = {x; Fin(P(x))} . We have PcZ. Let xeZ and
yéx. Putu= {vix uiy} ; Yev} . Then P(x)Ru, hence u is
finite. Since P(xu{yf ) = P(x]uy, P(xu{yp) is finite. This
proves X u{y} € Z. :

Theorem. If x is a finite set of finite sets then Ux is finite.

Proof. Put Z = {x; (Yu)(w ex => Fin{u)) =» Fin[Ux)}. We have
PecZ. Let xe? and y € x. We have U(xu{y}- ) ={Ux)uy. If each
element of x u{y} is finite then, in particular, each element
of x is finite and y is also finite. Thus Ux is finite and (Ux)uy
is finite. This proves (xu {y}) e Z.
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Theorem., If x and y are finite then xxy is finite,
Proof. xxyEPP(xuy).

fheorem. The class of all finite sets is not a semiset.’

Proof. Assume {x; Fin(x)$ € u, then VE Uu.

Theorem, A set x is infinite iff for each y € x we have
x=xudy}.

Proof. If x is finite, y € x, and x:-.xu(y} then xqu{y} y
which contradicts to the results of Section 1, Conversely, let x

be infinite and y ¢ x. Let r be a linear ordering of x. Put

Y & {uex; Fin(r"{u}nx)} . For ueY let F(u) be the first
element of x - " u} in the ordering r. For né€x ~ Y we put

F(u) = u. Finally, F(y) is the r~first eiement of x. Evidently, F

is a oné-one mapping'of x u.{y} onto x,

Corollary. If x is infinite and y ¢ x then xx=xu { y} but not
xZxu {y} 3 xu{y}ﬁ‘x but not xu{y}g x; and xfxu{y} but
not xnth)<’y} .

X - X - x

The axiom of existence of propér semisets does not imply that
there are proper semisets included in any specific set. If we
guarantee the existence of 2 proper semiset included in a certain
concrete set then we say that we are studying a witnessed universe.
When we restrict the family of properties admitted in the axiom of
class existence in such a way that proper subsemisets of all con-
crete sets are eliminated we say that we are studying a limit
universe. '

The study of witnessed universes is more difficult than that
‘of 1imit universes. The theory of witnessed universes is in fact
inconsistent in the classical sense, If ¢ is an entirely concrete
get (say, the set of all natural numbers less than

(29517%)) .
67 /y then it can be obtained in finitely many steps from

the empty set by successive addition of single elements; thus ¢ is
finite, On the other hand if ¢ has a proper subsemiset then c is
infinite in our sense. But our proof of the fact that ¢ is finite
has 1tself infinitely many steps (in our sense); thus it is not
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convincing. Only proofs of finite length (in our sense) can be said
to be convineing. Naturally, in a witnessed universe finite sets
cannot be simply isolated. Therefore with each construction in a
witnessed universe is associated a degree of convincingness, which
decreases as the length and complexity of the econstruction grows.
For example, if we put d ={¢, {ﬁ} , {{¢}}» , {{{ﬁ}}} } then

the finiteness of the set P(P(P(d))) has a larger degree of con-
vincingness that the finiteness of the same set presented by the

- 1ist of its elements. Moreover, the proof that these two sets are
equal has épproximately the same degree of convincingness as the
proof that the latter set is finite. The reader will agree that

the system of 8 x 8 fields of the chess-board is more comprehensible
than the ‘system of the same fields ordered in a linear sequence. We
shall not investigate these problems in the present book since they
are not yet satisfactorily understood,

Thus we shall study only limit universes. But in the world
perceivable by our senses, all situations to which our theory
applies correspond to witnessed universes. We shall therefore moti-
vate various notions introduced in our theory by such situations.
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Section 4

Countable classes

Our capacity for observation and distinction is limited by
the horizon in all directions. Needléss to say, this applies not
only to optical observation; the horizon is understood in the sense
of E. Husserl”’s %"Krisis der europzischen Wissenschaften und die
transzendentale Phinomenologie".

If a large set x is observed then the class of all elements
of x that lie before the horizon need not be infinite dut may con-
verge toward the horizon. The phenomenon of infinity assoclated
with the observation of such a class is called countability.

Thus the following classes are countable: the class of all
neople we shall meet in our lives, the c¢lass of all books we shall
have read, the class of all days before our death; also the class
of 211 problems which will be soived by a certain computer, etec.

In our theory, countability is represented by countable classes.
Tre definition is similar to the classical definition in Cantor’s
set theory, in spite of the different meaning of countability in
our theory,

pair (4, %) of classes is called an ordering of type o iff
linearly orders A,

is infinite, and

for each xe€ A, the segment {yeA; y<x}) 1is finite,

>IN

e~
N
st et S’

Theorem, If { A, <) is an ordering of the type & then £
wel’-orders A,

Proof. Let 2 be a non-empty subclass of A and let X, € Z. Since
the segment a = {yeA; NS } “igs a finite set both Z.na and ‘naz
are sets, Put z = Zna and r = = £na® - Evidently, x € 2 so z £ 0.
3inee r linearly crders z, # has a first element, say y. We prove
that y is a first element of Z in the ordering =, Let xe 2 and
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x<€y. Since <y,xo) € r we have X£X,, which implies xe:z. Thus
4 X,y ) € r; since y is an r-first element of z we have x = y.

Theorem., 1f { 4,4£) and <A1, <,) are orderings of type &,
then they are isomorphic.

Proof. By Section 2, since £ well-orders A and =<, well~-orders
A1, either the two orderings are isomorphic or a segment of one
ordering is isomorphic to the other ordering, Let B1 be a segment
of A4 (with respect to 51) such that <B1, é1> is isomorphic to
(A, = ). Since By is not a finite set, it is not isomorphic to any
segment of the form {yé Ay y:‘_‘x} 3 thus we must have Ay = B1.

Theorem, Let r be a linear ordering of a (both a and r are sets
Then < a,r) 1is not an ordering of type w.

Proof, Assume that { a,r) is an ordering of type . Then a
is infinite. Let x be the r-last element of &, Then
I= {yea; (y,x)er} is finite; dut {yea;(y,x) er} = a,
a contradiction.

Theorem. Let r be a linear ordering of an infinite set a. Let
X = {xea; the segment {yea;‘ y<x} is rinite} . Then {X,r) 1is
an ordering of type W and X is a proper semiset.

Proof. Evidently, r linearly orders X and, for each x¢ X,
the segment {yex; {¥y,x)ert is a finite set. Assume that X is
a finite set. Then X is a proper subset of a; let y be the r-first
element of 2 - X, Then X v {y} = {zea; zéy} is a finite set so
y € X, a contradiction, Since X€a, X is a semiset. By the preceding
theorem, X is not a set,

A class is called countable (notation: Count(X)) iff there is
a relation R such that <X,R) is an ordering of the type W. A class
is uncountable iff it is neither countable nor finite.

The following is trivial:

Theorem. (1) If X and Y are countable then X = Y. (2) 1If X is
countable and X=Y then Y is countable, ' ‘

The following theorem is proved exactly in the same way as
in Cantor’s set theory.
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Theorem. (1) If X and Y are countable then XuY and X x Y are
countable. (2) If X is countable and Y£ X then Y is either ecountable
or finite. (3) If X is countable and Y is finite then Y<X,

x=-X~x

People have always tried to go beyond the horizon; this is a
typical human aspiration, The aim is not merely to shift the horizon
further away but to transcend it in the mind. Mathematiés is one of
the most important instruments for this; it formulates exact state-
ments which transcend the frame work of perception. We shall incor-
porate a typical principle of transcending the horizon into our
theory in the form of an axiom. Let us make the following convention:
letters F, G, possibly indexed, will be used to denote functions;
lower case letters f, g, possibly indexed, will denote functions.
that are sets. (This convention holds in the whole book)

The prolongation axiom
For each countable function F, there is a set funetion f such
that FPcf,

The prolongation axiom says that each countable function has
a set prolongation. This axiom can be motivated as follows. Imagine
that we find ourselves on a long straight road lined with large
stones set at regular distances. The stones are numbered by natural
numbers; we are situated at stone number O and are looking in the
direction of increasing enumeration., The guard stones reach the
horizon, that is we cannot distinguish any last stone. The function
associating with each stone its number is then countable (in our
sense). The prolongation axiom assures us that this funetion has a
set prolongation, that is that beyond the horizon there is a stone S
such that the stones between the O-th stone and S form a set and
also that the function enumerating these stones is a set, This is,
obviously, a hypothesis that cannot be verified unless we leave our
stand or improve substantially our observational ability. Similarly
we hypothesize that after our death the behavior of the world will
at least for a while be similar to its previous behavior. One could
give many other examples. The prolongation axiom is a hypothesis
which serves ag a base for exact knowledge exceeding evidence.
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© Theorem. Let X be a countable class. Then there are sets a
and = such that = is a linear ordering of a and X consists of all
x ¢a such that the segment {yea; y<x} is finite.

Proof. Let a, be an infinite set and let =, be a set which is
a linear ordering of 84 Let X1 be the class of all Xeay such that
the segment {yea1; y-£1 x} 1s finite., Then X1 is countable, L_et
P be a one-one mapping of X; onto X and let FSf. Since F = £/'X,
we may assume ,dom(:,) =a,. Let ay be the set of all xea1 such that
the restriction of f to {y; v %, x } is one-one. Evidently, X, S a,.
Put a = f"a,; then XSa. Finally define x<y :(x.}’e a&:f"kx):*—,. f"gl"y)).
Then a and = have the desired properties.

‘._l'he last theorem shows that each .co'luntable class can be repre-
sent'ed_as a .cgrtain segment of a._h_- infinite set with respect to some
linear ordering. o

The following is trivial:
.'Thebr.e-m-. Eéch 'c_ouhtable cléés is a proper semiset.

Conseguently, no set-theoretical defimable class is countable;
each infinite set is uncountable; each subset of a countable class
is finite. The. class V is uncountable.

Theorem., If X isa countable class of finite sets then UX is
_cOuni_:_'able.

Proof, First, UX is not finite. Indeed, if we had UX = u

where u is a finite set then X would be also finite since X SPp(u).
Let = be an ordering of X of type @w. Put

Y = {y; (IxeX)(y = x - U{z # x5 z=x})} . Y 15 a countable class

of finite sets, UX = UY and any two distinet elements of Y are dis-
joint. Thus assume that any two distinet elements of X are disjoint,
Since X is a semiset, UX is also a semiset. Let u be a set such that
UXESu and let <_be a linear ordering of u (a set). For x,y €UX put
x =y = (Ix ¢ x)(3y° ex)(xe X, &Y€Y, &((x°=y° & X soy)v(xofyo& X, Z Yo )
It is easy to show that <Ux, ._‘.1> is an ordering of type .

Theorem. If X is countable then P(X) is also countable,

Proof. We have X=% P(X) and therefore P(X) cannot be finite. Le+
<X, é) be an ordering of type & . Since each subset of X is fin'se
each subset y of X is a subset of a finite segment of X (i.e. thera
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is an x€ X such that y € {z €X; z<x}) o Thus P(X) can be expressed
as the union of a countable class of finite sets; by the preceding
theorem, P(X) 1s couptable,

Theorém. Let X be a countable class.
(8) UX is a set iff there is a z<X such that UX = U z,
(b) NX is a set iff there is an z< X such that NX = Nz,

Proof. We prove (a); (b) can be proved analogously. The impli-
‘cation <= 1% trivial., We prove =>. Let UX = u. lLe.t a be an infinite
set and let = Ve a linear ordering of a such that =< is a set and
X consists of all x ea such that the S-é'eg'ment of a determined by x
is finite. Put a, ={x€a; (Vyea)(y<x=y<u)}. Obviously, X< a4
If x€a, - X then u =UX =({yeay, y2x}. Let x, be the <~first
element of ay such that u = U{ yeay; ysE xo} N Then X, €X, and
consequently {y€a1, y £x, $ €X, i.e, the set z ={yea1, y<xo}
has all the desired properties. '

Corollary,. If X is a countable class such that NX =@ then
there is a subset z of X such that Nz = ¢.

Theorem., Let X and Y be eountable disjoint classes. Then there
are disjoint sets u and v such that X&u and Y¢S v,

Proof. Define a funetion 'F on XuY putting F(x) = @ for xeX
and F(x) = {#} for xeY., Let FEf and put u = x¢dom(f); f(x) = O}
and v ={xedom(f), f{x) = {¢H

Theorem., Let X and Y be countable classes such that UXn Y = @
Then there are disjoint sets u and v such that UX¢cu and UYEvw,

Proof. Let a be an infinite set and < its lirear ordering
(a set); let Z be the countable class of all x¢a such that
{y€a; y£x} is finite. Let F, G be one-one mappings of Z onto X,Y
respectively; let FEf and G<Sg, Let F(x) = U(f"{yea; y<xp) and
g(x) = U(g" {yea, y<x}), and put ay ={x ca; I(x)ng(x) =0}.
Then ZSa, and the sets u = U(f"a1) and v —U(g"a ) have the desired
properties.,

Corollary. Let X, Y be countable classes such that UXe<NY,
Then there iz a set u such that UXcucY.

Definition. Let 7(}() be a property of classes from the extended
universe. The class { X; ¢(X)p 1is directed (w.r.t.inclusion) iff
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for each X, Y such that ¢(X) and ¢(Y) there is a Z2XuY such that
¢(2). {X; p(Xx)} is dually directed (w.r.t. inclusion) iff for
each- X, Y such that y’(x) and ({(Y) there is a Z2<£XnY such that

p(z)

In particular, a class Z is directed w.r.t. € if _
(Vxez)(Vyez)(Jdzez)(xuycz) and analogously for dual
directedness.

Theorem. Let Z be a set-theoretically definable class, If 2 is
directed then for each subsemiset X of Z there is a u€Z which is
an upper bound of the elements of X w.r.t. inclusion, i.e. there ig
a u€Z such that each v€X is a subset of u. If Z is dually directed
then for each subsemiset X of Z there is a uéeZ which is a lower
bound of the elements of X w.r.t. €.

Proof. We prove only the first assertion; the second one can
be proved analogously. For Z = f there is nothing to prove. Suppose
X # . Since UX is a semiset, there is a set u  such that UX<cu,.
Put a = {xcu; (Jz€2)x €z)} . Observe that x€a and y €a implies
X vy €a; furthermore, X<a and consequently a # f. Hence a has a
maximal element w.r.t. inclusion, i.e. there is a u €a such that
uy is not a proper subset of any element of a, Take a v€aj then
u, Uv €a and hence y Vv = ug. There is a u€ Z such that _u1£ u and
this u has the desired property.

The following theorem is analogous but much more powerful.

Theorem. Let Z be a set-theoretically definable class. Let X
be a coun:table subsemiset of Z, If X is directed then there is a
u €Z which is an upper bound of the elements of X w.r.t. inclusion.
If X is dually directed then there is a u€2 which is a lower bound
of the elements of X w.r.t. &,

Proof. We prove only the first assertion. Iet < be a set which
is a linear ordering of a set a such that X consists of all xea
determining a finite segment of a. Put
a; ={xe€a; (Juez)(Vyea)(y<x => y<Cu)p . Obviously, Xca,. Choose
an X, €_a1 - X. Then we have a u€ Z such that each element y¢a less
then or equal to X, is a subset of u. In particular, each element
of X is a subset of u.
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This theorem has many important corollaries and we shall often
use it. We shall call this theorem the theorem on countable directed
semisets.

We give an example of application., Let F be a countable function
and let Z be set-theoretically definable, If each f<SF belongs to Z
then there is an f€Z prolonging F, i.e., such that F¢f, In parti-
cular, if F is one-one then putting % =-{f; f is a one-one function}
we obtain a one~one function f prolonging F.

Recall that we claimed in Section 1 that we could omit the
Induction axiom from our theory. Then we could define finite sets
in the same way even if we could not prove many theorems about them.
We could prove the theorem on induction for finite sets (with some
effort). Some kind of the axiom of prolongation then makes it
poseible to transfer set-theoretical properties of finite sets to
gsome infinite sets. For example, not only all finite but also some
infinite sets we have their union, power set etc. Cur considerations
would be th%; limited to such sets.
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Section 5

Codable classes

We have declared that our basic objects of study are classes
from the extended universe. Nevertheless, it is sometimes useful
to work with other classes. Classes outside the extended universe
can serve as a motivational tool; mbreover, using suech classes often
leads to simplified formulations.

In particular, we are led to classes outside the extended
universe if there are matural reasons to consi'der clagses whose
elements are classes from the extended universe. This section is
devoted to the prob-lein of coding of such classes. '

If X and S are classes rrom the extended universe and if S is
a relation (subclass of ) then <K, S is a coding pair

Let V(I) be a property of classes from the extended universe.
A coding pair (K, S) is said to code the clags { X; y(x)} if,
for each class X from the extended universe, we have

p(x)= (Iyer)(x = s"{y}).

A class { X; yv(x)} is codable if there is a coding pair which
codes that class,

Coding pairs <K, S) and {K,, S,) code the same class if

(Vz)((Ax ex)(x = s"{x}) = (Fy ek )(x = 5,"{7})).

Theorem, Let {I, (x)} be a codable class. Let w(x) be a pro~
perty of classes from the extended universe and’ let p imply v
Then the class (X' (x)} is codable.

Proof. Let (¥, S) code {X; Y(X)} and put

K, = {xeK' Y(S"{ } }. Then (K, S) codes {X- ),J(X)}
Theorem, The cléss {X; XSV} is not codable.
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Proof. Assume that <X,5» codes { X; X¢V }. Put
Y={xcK; x ¢ S"{x)} . Then YCV and for all x €K we have Y ¢ S"{x}.

Theorem., Each class from the extended universe is codable.
Proof., Put E = {(x,y); xey} . For each X, {(X,E) codes X.

In Section 2 we defined membership of an object in a class
only for classes from the extended universe. Now we extend the defi-
nition of membership to codable classes.

Let ,a(x) be a property of clagsee from the extended universe.
Assume that {X; p(X)} is codable. Y belomgs to {X; ((X)} , or ¥
is an element of {x; .{(x)} iff Y has the property )0; in symbols,

Te{x plx)} = p(1

The preceding theorem implies that the present ﬂefinition
extends the definition of membership given in Section 2.

We present some important examples of codable classes.

A class R is an eguiiralence iff R is a reflexive, symmetric and
transitive relation, i.e. iff we have the following:

(Vx)((x_,—x) ¢ R),
(Vx)(V5) (xvd> e R 2 yyx)e R) R
(V=) (V) (Yz) (&miv) e R & {12y €R = Smz) e R).

A factorization of a class Z modulo R is the class

z-)n = {1 (Iyez)(x = 2aR"{y})}.

The class %/R need not be a class of the extended universe
since some classes of mutually equivalent elements need not be sets.
But we have the following trivial theorem:

Theorem. For each Z and each equivalence R, Z/R is coded by
{Z, Rn zz) .

Observe that for each equivalence R we have dom(R) = V. We
ghall often define an equivalénce only for elements of a class A.
In such a case we always assume that for all x, vy ¢ A we have
{x,7) € R (and for all xeA, y £ A we have {x,y) ¢ R).

We shall take the liberty to denmote equivalences by £, =,, =
etc, and write x & y instead of (x,y) € £ as usual.

Let us make the following definitionss
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2l - {F, dom(F) = Y and rng(F) € z}
(recall that F varies over functions!),
Po (2) = {X; X¢Z and X is either finite or countable } .

Fote that if ¥ is a finite set then ¥ = { £; dom(f) = Y and
rng(f) €z } and hence jd is a class of the extended universe. But
in non-trivial cases the classes z¥ and P, (2) are outside the ex-
tended universe.

Theorem. For each Z and each countable ¥, the class ZY is
codable.

" Proof. Put S = {<{x,f); Y<dom(t) & rng(fly)<z & xecr Py},

We show that Z® is coded by {dom(S), S) . If fe dom(S) then

S“(f} = f}Y; but £} Y is certainly an element of %°. On the other
hand, let F be a function such that dom(F) = Y and rng(F) € Z. By
the prolongation axiom, there is an f such that F ¢f, Obviously,
fedom(S) and F = S"{f} .

Theorem, PU(Z) is codable for each 2.

Proof, Let Y be a countable claas and let <K1, S1> code ZY.
We may assume K1 £V (cf. the proof the preceding theorem). Let
a £ Ky and put K = Ky u a.} « Define
S= {(x,y); yeK, & xerng (S1"< y})} .

We show that (K, S) codes P,(2). Let x¢K. If x = a then
$"{a} =@. If x #a then S"{x} = rng(5,"{x}). But S;"{x} 1is
an element of ZY, thus S"{x} is subclass of Z and is either
countable or finite. Conversely, let X be a finite or countable sub-
class of Z. If X = f then X = S"{ a} ; if X # § then there is a
F €z’ such that X = rng(F). Now F = 5" {x} for an x €K, which
implies X = S"{x} .

Writing { Yx; xeA} we shall always understand that we have
a coding pair (A, S) such that Y = S"{x} for each x€A. Then
{1, xeA} denotes the class {¥; (Ixea)(Y = s" {xp)t.

A coding pair {K, S) is called extensional iff x # y implies
S"{x} # S"{y} for each x,y € K. A codable class {X; 4,0(1)} is
extensionally codable iff there is an extensional coding pair which

codes { X; ¢(X)}.
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Certainly, each class X of the extended universe is exten-
sionally coded by <X,E) (where E = {(x,y); xey}) .

_Theorem. (1) If extensiomal coding pairs <K,S) and <EqsS)
code the same class then KzK1. (2) It <K,S> 18 an extensional
coding pair and if K=K then there is an S such that <{K,,S;»
is an extensional coding pair which codes the same class as (K,S) ..

Propf. (1) For x €K put y = F(x) 1ff yeK, & S"{x} = S;"{¥y}.
Obviously, F is a one-one mapping of K onto K. (2) Let F be a
one-one mapping of K, onto K. Put 5y = {(x,¥) ; yekq & {x,(y)) e S}.

It 18 seen that only an extensional coding of a codable ¢lass
is sufficliently good. Extensionally codable classes behave as if
they were classes of the extended universe., For example if {x; y(x)}
is extensionflly codable then we may write Z X {X; y(x)} to mean
that for an extensional coding pair {X,S) which codes {x; y(x)}
we have ZX4 X, Evidently; it 1is irrelevant which coding of {x; y(x)}
is taken. If {X; W (X)} 1s another extensionally codable class
then {X; V'(x)} % {% y (X)} bas the obvious sense.

We econstructed the extended universe with the conviction that
it i1s a useful instrument for the investigation of any class having
the property that each of its elements can be constructed before
the class as whole. We believe that, having such a class {X; p(X)}
(consisting of various objects), to each object X satisfying y(x)
can be associated a set from the universe of sets as its code and
in this way the whole class can be coded in the extended universe
as the class of all assoclated codes. This leads to various axioms
depending on the specific nature of the classes to be coded. We shall
now assume only one axiom; but we do not exclude the possibility of
assuming other axioms as well. -

Axiom of extensional coding
Bach codable class is extensionally codable.

Thus whenever we prove that a class is codable, we may work
with an extensional coding.

Theorem. If Y is countable then P, (Y) is uncountable.

Proof. Obviously P (Y] is not finite. Assume it is countable.
Then P,,(Y) can be coded by a pair (¥,5). Put Z = {xe¥; x ¢ sYx}}.
Evidently Z<SY but there is no x€Y such that Z = S"{x} » @ contra-
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diction.

A pair {A,%) 1is said to be an ordering of typefl if
(1) < well-orders 4,
(2) A is uncountable, and
(3) for each xeA, the segment { yeA; Yéx} is countable or finit

The following theorems are immediate consequences of theorems
in Section 2.

Theorem. If <A,<) and <A1, _<_1> are orderings of type Q
then they are isomorphic.

Theorem. Let (A, 5) be an ordering of type M1, let B be eoun-
tadble, and let ‘_<1 well-order B, Then there is a proper segment A1
of A (w.r.t. £) such that <{A;,<) and <B, £,) are iscmorphic.

Theorem. Assume that < well-orders A; assume further that for
each countable B and each well-ordering 51 of B there is a proper
segment A4 of A such that <A1, 5) and (B, %<, are isomorphic.
Then A is uncountable.

Theorem. Let <A, ﬁ) be an ordering of type L and let BmA,
Then there is .an ordering 51 such that <B, 51> is an ordering of
type fL.

Theorem. There is an ordering of type Q.

Proof. Let Y be a countadble class; then Y2 is also ccountable.
Thus P ,(Y2) 1s extensiomally coded by a pair <X,S5). Put
K, = {x €K; S"{x} well-orders Y } and
<{x,37) € 84 iff x,y€Ky and <Y,S*"{x}) is isomorphic to {¥,5"{y},
Evidently, S is an equivalence. Let (A,Sz) be an extensional
coding of K;/S;. For x,y €A put x<y iff, for each x, € S," { xp and
each y, € S," { y} , {Y,8" {x1}> is isomorphic to a (possibly improper
segment of Y w.r.t. the ordering S" { y1} « Using the preceding
theorems, one easily shows that <A,£> is an ordering of type Q.

50



Section 6

Uncountable classes !

_ In classifying various kinds of infinity we accept also in

the alternative theory Cantor’s principle that each class determines
its dbasic 1nfin1ty type - cardinality - independently of any struc-
ture the class may be endowed with, This principle is formalized in
the definition that two classes have the same cardinality iff they
are equivalent,

Let us now ask the question which types of infinity ean be found
in the extended universe. Our theory offers various possibilities of
theories of infinity. For example, we could imitate Cantor’s whole
theory. In this case we would first assume the axiom of choice whiech
guarantges the well-orderability of the universal class and then
define cardinal numbers as segments of such a well-ordering not
equivaleént to any smaller segment, Further axioms would guarantee
the existence of as many cardinal numbers as we liked. This would
make it possible to model Cantor’s whole theory in our theory.
Needless to say, such a model need not contain all subclasses of
the class of natural numbers, only some "appropriate™ ones. The only
difference from Cantor ‘s theory would consist in the understanding
of infinite cardinals. Cantor’s theory recognizes infinite cardinals
almost as a part of our world; but in our theory they are only some
more or less pathological semisets.

This example of a development of the alternative theory is not
the only possible one. We can assume axioms for any other theory of
infinity, provided it does not contradict the other axioms. Cantor’s
theory is just one possibility, '

At present, no reasons for the acceptance of a nontrivial
theory of infinity are known. A1l such theories must be speculative
" in character. Consequently, their results mentioning infinite
cardinalities will be vacuous if their speculative background is
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rejected. To prevent this, we decide to accept a trivial theory of
infinite cardinalities. We shall do this by assuming the following
axiom:

Axjiom of cardinalities
For all classes X, T if both X and Y are uncountable then they
are equivalent.

This axiom says that there are exactly two infinite éardinali-
ties: countability and uncountability.

We have some more profound reasons for assuming this last axiom.
Our aim is to construct the extended universe to be as rich as
possible. Only then it can play the role of a universal instrument
for the study of mathematical structures. Thus we may postulate the
existence of classes corresponding to properties we are unable to
describe, provided that their existence is not absurd. Such classes
are possible, may exist, Of course, they are imaginary in a sense.
Saying that the existence of such and such classes is not absurd we
mean that the assumption of their existence does not contradict
axioms that have already been assumed. We may formulate a principle
serving as a guide for the formulation of new axioms. The principle
says that each class that may exist does exist. In particular, the
axiom of cardinalities asserts that for any pair of uncountable
classes X, Y there is a one-one mapping of X onto Y., Consistency
of this axiom relative to the previous axioms was proved by A.Sochor.

By our last axiom we have not excluded any possible development
of a more sophisticated theory of infinity, if such a theory should
be desiradble. In that case we would study some finer notions of
cardinality using equivalences based on one-one mappings of a certain
kind. This concerns any other axiom;accepted on the base of the above

principle. ;

Our last axiom has several simﬁie consequences.

Theorem. For each uncountable d}aes X, there is a relation R
such that (X, R) is an ordering of type ().

In particular, the universal cléss~V, each infinite set, and
the class PLJ(Y) for a countable class are examplex of classes
having an ordering of type {l.

A class X is a selector for an équivalence R iff we have
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the following:
(1) (Vx,yex) (&y) €R = x =),

(2) (¥x)(3yex) ({xy) € R).

Thus a eeJ_.ector chooses a representative of each element
of V/R.

Theorem. X is a selector of an equivalence R iff (x,R)
extensionally codes V/R.

Theorem. Each equivalence has a selector.

Proof. Let R be an equivalence and let X be a well-ordering
of V. Put 4 = {x; (Yy <x)(<x,y) ¢ R)}. Then A is a selector.

Theorem. Let R be » relation. There is a function F such that
F SR and dom(F) = dom(R).

Proof. Let < be a well-ordering of V of type L), For x edom(R) :
let P(x) be the £-firgk element of the class R xp o

Theorem., Let R be a, relation such that dom(R) is countable
and, for each x €dom(R), R"-{x} is a semiset. Then R is a semiset.

Proof. Put B = {<y,x); xedon(R) & (R} {x})c y}. Let
FCR be a function such that dom(R) = dom(E) = dom(F). Using the
prolongation axiom, take a set f such that FSf, Ther (y,x)é€R
implies {y,x) €F(x), hence <y,x) € £(x), which implies
{¥,x) ¢U(rng(f)). Thus R cU(rng(f)); R is a semiset.

Corpllary. The universal class is not a union of countably
many semisets.,

Theorem. Let (4, 5) ‘be an; ordering of type SL. Let B be a
countable subclass of A. Then thére is an x €A such that
BE{yer & y<x}.

Proof. We may assume A = V. Put R = {{y,x>; x€B&y<x}.,
Then R is a semiset by the preceding theorem; rng(R) is a segment
of < and is also a semiset. Hence rng(R) # V and there is an x such
that each element of rng(R) is less then x. Thus

B € rng(R) s{ycA; y<x}.

Corollary. If (A,<)> is an ordering of type {1 then A is not
cofinal with any of its countable subclasses.
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Theorem. Let R be a relation such that dom(R) is countable
and, for each xedom(R), R} {x} is countable. Then R is countable
class.

Proof. Let < be an ordering of V of type £L. For x e dom(R),
let r(x) be the first y such that, for each z, <z,x)e R implies
<{z,x) <y. Since rng(F) is at most countable, there is an x such
that rng(F) &{y; y<x}. Thus R C{y; y<x}, which implies that
R is countable. -

Corollary. The union of countably many countable classes is
a countable eclass.
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Chapter II

Soms traditional mathematicalistructuféé_

In the course of the development of mathematics, mathematicians
have created various worlds of objects (or various kinds of such
objects) that have become permaneni parts of mathematics, owing to
their far-reaching importance. These will generally be called
traditional mathematical structures.

Various mathematical structures originated before set theory
or, although they were developed in parallel with set theory, have
kept their autonomy. Various other structures came into existence
in dependence on set theory, but their meaning is not confined to
thelr use in set theory.

Any mathematical theory which claims to encompass the entire
world of mathematics must confront the traditional mathematical
structﬁres similarly as the Cantor ‘s set theory did, i.e. it must
incorporate them in some way.

’ Iﬁ our case, we shall construct traditional structures inside
the extended universe and shall not be forced to meke any further
- extension of our universe. This way is entirely usual in the Gantor's
set theory.

By saying that we construct a traditional structure in the ex-
tended universe, we mean that, mutatis mutandis, we construct a
canonical model of that structure inside the extended universe. Then
we prove several theorems about the model, These convince us that
the model can be identified with the original structure in that the
model has all the important properties of the structure in question.

However, traditional structures afg cornstructed in the extended
universe not only in crder tc show thal such a construction is
possible, They will be aiso used for studying of the extended universe.
We shall see that some problems concerning the extended universe can
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be reduced to problems concerning some traditional structures; thus

using traditional structures we shall be able to understand better
the structure of the extended universe.

-~

In the present chapter we shall construct only structures that
will be used in the sequel.
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Section 1

Natural numbers

Following von Neumann, we shall model the natural numbers in
the extended universe in such a way that zero is the empty set and
each natural number is the set of all smaller natural numbers, Thus
weput O =, 1 = {¢} » 2 -'{¢,{ ¢}> etc.; in other words we identify
2 with {8, {0}} ete.

This way is obviously rather advantageous, First, each natural
number is a set from the universe of sets. A number x is less than
a number y iff xe€y. And observe that e.g. the number 5 is a set
having five elements, which makes possible to define the number of
elements of a set as the unique natural number set-theoretically
equivalent with that set.

However, our aim is not only to define partieular mnatural
numbers but also the class of all natural numbers. Thus we need a
property sﬂ(x) that can be identified with the property of being a
natural number. When we formulate such a property we are obliged to
prove various theorems showing that our choice is been adequate.

We shall construct the natu;él numbers inside the universe of
gsets. Thus the whole first part of the present section will concern
only the universe of sets; if we shall use classes at all then only
set-theoretically definable ones; they could be always replaced by
the respective set-theoretical properties. For the sake of simplicity
we shall use heavily the regularity axiom, even if it is well kmown
that this axiom is not indispensable for the construction of the na-
tural numbers. : :

A set x is a patural number if it satisfies the following:
(1) Each element of x is a subset of x, 1.e. (Vyé x)(ygx), and
(2) € is connected on x, i.e. (Vy,zex)(y €ZVY = 2VZEY)

The class of all natural numbers is denoted by N, We use ot, /3,
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{, J (possibly ihdexed) as variables ranging over' natural numbers,
We have some trivial facts.
Theorem. Each element of a natu;;'al number is a natural number,
Theorem., If o, € N then «n fle N,

Theorem, If o, €& N and o« i8 a proper subset of ﬁ then
v €f.

Proof. Assume o Cﬂ . By the regularity axiom, there iz a
reﬂ-ob such that fn (ﬂ-eo) = f, Now [eﬁ implies /‘_C_/i and
hence J"Seb. Let d' € o« . Then ,Jreﬁ, which implies 3 e/’ or
d = g oot fe d'. But the last two cases imply [ €, which is
impossible, Thus J‘e /’, which proves « S/‘. We have shown ol = [
and consequently £ € f8.

Theorem. N is linearly ordered by the relation {( o<, B>
o € /8 Vo= ﬁ}‘ .

Proof. Put R = {(e, ), « € VL= B}, Evidently, R s
reflexive. Assume <¢,/3> €R, {B,¢) e Rand of /3 . Then « ¢fl
and ﬂ € o, hence o« € «, which is impossible by the axiom of regu-
larity. Thus <°4, ﬁ) € R and <ﬂ,o¢> ¢ R implies « = ﬁ . We prove
transitivity, Let {ot, ) c Rand {f,y)ecR. If Luf or /5.[
then trivially <, J) € R. If < €/3 and }$ € g then « €y and
consequently <o, y € R. Finally, take arbitrary o,/f5 € K. Then
ol n/.ZeN and « n%ia a subset both of o and of /5. Ir ocnﬂ-oc
then o/-,C.ﬂ and consequently either c-c-ﬂ or o eﬂ (use the preceding
theorem). Similarly for ot n ﬂ = ﬂ « Thus it remains to consider the
case o n B et and of nﬂc . Then & n B €t and wnﬂeﬂ by
the preceding theorem, thus o nﬁ € x N/, which is impossible by
the axiom of regularity,

When we speak of the ordering of natural numbers we always mean
the ordering from the last theorem, if not stated otherwise, and
denote it by £ . Let us stress the fact, that £ is no well-ordering

of N,

Theorem., (1) feN. (2) For each « € N, U {nb} is an element
of N. (3) The nusber O is the least element of N in the ordering
of natural numbers, (4) For each o, the number o U -{eo} is the
immediate siceessor of ot . (5) If ot # O then there is a B such that

b
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o = ﬁ v {ﬂ}o
Proof. (1) - (3) are trivial. (4) : Evidently, ot € o U {ot}

and o f o U {«f . ABsume o €feo u {} . Then either y €% or

= o/, In both cases we obtaln o4 € o, which is a contradietion.
(5) - Let o& 4 O and consider the relation % N {<f, ﬂ);

€ /3 v [ = cs\} (the restriction of the ordering of natural numbers
te oc). This is a.set and a linear ordering of o ; thus there is a
largest element ﬁ. We have § €0/ and ﬂ v {ﬁ}é o . Since

.4.,5/ v {ﬁ} is impossible, we get oc-ﬂ v {ﬂ}.

Consequently, N has no largest element in the ordering of natural
hum‘lpfra and hence N iz not a set,

The theorems we have proved show that our natural numbers have
&1l the ordinal properties that we expect from natural numbers, In
the following theorem we shall show that our natural numbers have
also the necessary cardinal properties.

Theorem. For each set x there is a unique natural number o<
set-theoretically equivalent to x.

Proof. We first show the existence using the axiom of induction.
Let ()O(x) be the set-formula saying (304)(::&«.). Then So(ﬁ) is evident,
Assume (f(x) and let y £ x. Let o6 be such that x Xe¢. Then
xv{y} B 2v {.c} , which gives Sﬂ(x v {y}) . It remains to prove
uniqueness., Assume x2« and x & ﬂ. Then o Qﬂ . Now if o eﬂ then
ot is a proper subget of ﬁ; thus o&&ﬂ 1s impossible. Similarly,
/3 € ¢ 18 impossible. Consequently, « = ﬁ .

By the last theorem, for each set x we can define the number
of elements of x as the unique r_xatural number o/ such that x "306.

Addition and multiplication of natural numbers are defined as
follows:
)"!._&-tﬂlf&obU({ﬁ} X ﬂ).
]'-oa.ﬁa[éoaxﬂ , and

oL+1-eLu{oL} .

Note that the last definition agrees with the definition of sum
and with the definition of 1.

We may define exponentiation by taking 06/3 to be the number of
elements of the set {I‘; dom(f) = /5 and rng(f) < ,{,},
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It is easy to verify that'the class N endowed with the operations
of successor, sum, and product satisfies the axioms of first order
Peano arithmetic, This shows that we have constructed the natural
numbers inside the universe of sets in such a way that they can be
identified with the classical natural numbers. )

Now we are going to prove the theorem on recursive definition
of functions on natural numbers; this theorem is an important example
of an application of the natural numbers in the universe of sets.

Theorem, Let G be a set-theoretically definable -function and
let dom(G) = V. Then there is exactly one function F such that
dom(F) = Nand F() = G(F /‘oc.) for each ‘o4 § this function is set-
-theoretically definable. _ §

Proof. Put M = {f; dom(f) e N & (Votedon(f)(f () = a(z Fat))}.
Obviously, M is set-theoretically definable., Let f, g &M, Then fcg
or g&f., Indeed, if & were the least number such that
o € dom(£f)n dom(g) and () 4 g(x) then we would have f/ot= g Poc,
thus f(«) = G(f/‘oo) = G(g fea)- g (<), a contradiction. We prove
that for each o there is an feM such that o €dom(f)., Otherwise,
let o« be the leaat number for that such f does not exist., We have
o 40, thus & = B U {B} for some B. Let feMand Bedom(). Then
fu{pB} # don(f), thus o = dom(t). Put g = £u{<G(E),x)} 5 we
have g€ M and o(.edom(g). Now put F = UM, Ve see that F has all
desired properties, It remains to prove uniqueness, Let F1 be such
that dom(F,) = N and (Ve)(Fy(«) = 6(F, } £ )) and assume F 4 F,. et
« be the least number such that F(x) # Fy(x). Then Flet = P, Mot
thus F(w) = G(F )= 6(F,/0) = Fy (), a contradiction. This con-
cludes the proof. '

There are several variants of the theorem on recursive definition
of functions; these variants can be easily deduced from the last
theorem or can be proved in the same way. For example, we may replace
the condition (Ve)(F(x) = G(FMe)) by the condition

F(0) = 6(0) & (Vu)(F(w+ 1) = G(F(x)) etec.

Using the last theorem we define the hierarchy of iterated
power-sets and associate with each set its rank. These notione help
to analyze the structure of the universe of sets,

The following defines set-theoretically a unique function on
natural numbers: ’
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F(o) = {8} , P+ 1) = (B()) .
Theorem. deﬂ implies P) Qf(ﬂ).

Proof. We prove 1—>(ob) Sf(oc+ 1) for each o(. Assume the contrary
and let o be the least number such that P(w) & F(x + 1). Since
o # 0, there is a/ such that o= 8 + 15 we have 'f(ﬂ) <¥ ﬁ+ 1).
But this implies B(P(f)) € B(F( + 1)), thus Flw)c Flw + 1), o
eontradiction,

Theorem. V = U rng(F).

Proof. Put V' = Urng('l"). Evidently, P €V’, Assume y €V’, Let f
be a function on y defined as follows: f(x) = min {o(,; xef(oo)} .
There is a such that f"y € J/. Hence for each x€y we have xe-?(y’) ,
which implies yef([+ 1). We have y e V', This proves V = V' by the
axiom of € -induction.

This theorem shows that we may associate with each set x from
the universe of sets its rank Iz(x), defined as the least natural .
number o6 such that xef(o(.) . The following is obvious:

Theorem. (1) For each natural number o, ‘Z@o)-- L.
(2) xey implies (x) e x(y).
(3) %(x) 2 (max{2(y); yex})+ 1.

Theorem. There is a set-theoretically definable one-one mapping
G of P(N) onto N such that G() = O and xcy implies G(x)e G(y).

Proof. Put G(x) =Z{2°‘; <ex} for each xS N; this mapping
has the desired properties. :

Theorem. There is a set-theoretically definable one~one mapping
of N onto V,

Proof. Let G be the mapping from the preceding theorem. F is

defined inductively by the condition F(«)= F*(6"'(«)). Using the
axiom of € -induction we prove rng(F) = V,

-X =-X~x-

In the rest of this section, we shall consider natural numbers
from the point of view of the extended universe.

" Theorem. There is an infinite natural number.

N
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Proof. Let x be an infinite set and let o be the number of
elements of x, i.e, o6 Obviously, o is infinite,

PN will denote the class of all finite natural numbers, i.e.
{ets Pin ()} . Evidently, FNcN,

Letters n, m, k, possibly indexed, will be used as variables
for finite natural numbers,

By Chapter I, Section 3, we have immediately the following:
O€ePN & (Vn)((n + 1) € FN);
(Ym,n)((m + n)e PN); (Ym,n){(m.n) e FN);
(Ym,n)(n"¢ FN); (Vn)(ngFN).

_Theorem, The ordering of natural numbera {(o(,,p) ;ozep Vol -ﬂ}
restricted to FN is an ordering of type w.

Proof. FN is infinite since it has no last element in the' orde=~
ring of natural numbers. For each n e FN, the segment {066 N; o0 £ n}
isnvu { » , hence a finite set.

Consequently, FN is a countable class. Note that N is uncoun-
table since it is a set-theoretically definable proper class.

The following is the theorem on induction for finite mnatural
numbers.,

Theorem. For each class X, if O eX and if X contains with each
nalson + 1, then FNEX,

The easy proef is left to the reader. Now we are going to
formulate a thecrem on recursive definition for finite natural
numbers; we shall present a rather powerful formulation,

Theorem. Let Y(X,Y) be a formula such that (VY) (Ehx) ¥ (X,Y).
There is a unique relation R such that dom(R) < FN and for each n we

have (f(R“{n} ; R/ n).

Proof. Let y(X,n) be the formula
Rel(x) & dom(X)En & (Ym en) tp (X"{m} : X/\m).
It follows immediately that Y/(X,n] & ;!;(Y,n) implies X = Y and that
su(X,n) & men implies yz(X/‘m, m). We prove that for each n there
is an X such that ql(x,n). Assume the contrsry and let n be the
least number such that —:(3)() (/;(X,n). (Here we uge the fact that
each element of FN is finite!) Evidently, n £ @; let n=m + 1 and
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let Y be such that (Y,m). Take the unique Yo satisfying 7(YO,Y)
and put X = Y U (¥, x {m}) . Then y(X,n), a contradiction. Putting
R = U{x; (In) y (¥,n)} , we obtain a relation with the desired
properties, Uniqueness is then obvious. .

The following theorem is another variant of the theorem on
recursive definition; it is proved similarly.

Theorem. Let G be a function such that dom(G) = V. Then there
is a unique function P such that dom(¥) = FN and F(n) = G(F/n) for
each n.

One can easily verify that not only all natural numbers but
also all finite natural numbers satisfy all axioms of firat-order
Peano arithmetic. Thus we have two models of natural numbers in the
extended universe, the elements of N on the one hand, and the
elements of FN on the other hand,

Note that only elements of K play the role of natural numbers
in the universe of sets. If we work in an extended universe which is
a limit universe then the role of the classical natural numbers is
played by the elements of FN, In this case we can view N as a useful
prolongation of natural numbers, which preserves many good properties
of natural numbers but is not well-ordered since e,g. the class
N - FN has no least element. Finally, if we work in a witnessed
universe then the classical natural numbers correspond to elements
of N, whereas FN forms a canonical representative of the way to the
horizon. Since we have to motivate our considerations mostly by
witnessed universes, we shall prefer the terminology "natural numbers"
and ®finite natural numbers".
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Section 2

Rational and real numbers

Since we have distinguished natural numbers from finite natur:
numbers, we shall have also two kinds of rational numbers. We shal!
only sketch their construction since it is quite usual,

First, we construct the integers (positive, negative and zero
and the finite integers, For this purpose we take O as a code for
the sign "minus"., Then the class N(°) of all integers and the clas:
rn(" of all finite integers are defined as follows:

N e XU {0, )5 oLk O},

FNC) w PN U {{O,nY; n b0},

Obvious definitions of sum and produet ofj(finite) integers
and proofs of simple basic theorems on them are left to the reader
Note only that FN(') is a subclass of N¢~) and that the operations
on FN(~! are restrictions of the corresponding operations on §=?
FN(') 1s countable and N¢") is uncountable. (") and sum and produ
as operations on N(') are set-theoretically defimable,

In speaking about fields, integral domains, etc. we make the
convention that by "the field T" we mean a class (domain) endowed
with two operations (satisfying the usual axioms) but by "the clasi
T" we mean only the domain.

The field RN of rational numbers (rationals) is defined as
the quotient field of the integral domain N(_) . Clearly, we can
define the field RN in such a way that it is set-theoretically
definable and that N(-) is a substructure of RN,

The field RN has its natural linear orderiﬁg,.which is also
set-theoretically definable; it will be denoted by <. We introduce
positive and negative rationals, absolute value (notation: lxl) el
A1l other notions concerning rationals are denoted as usual,
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. The class FRN of finite rational numbers is defined as follows:
FRN = {X s x,ye W) gy £ o)

Restricting sum and produet to FRN we make FRN into the field
of finite rational numbers. : '

Obviously, the field FRN is the quotient field of the integral
domain FN('-). The natural olrdering of FRN is the restriction of the
natural ordering of RN to FRN, The absolute value defined in FRN is
thé restriction of the absolute value defined in RN, ete. The class
FRN is countable and the class RN is uncountable,

In a 1imit universe, the field FRN corresponds to the eclassical
rationals. On the other hand, in a witnessed universe, the role of
classical rationals is played by RN,

The class BRN of bounded rationals {or: finitely large rationals)
is defined as follows:
BRN = {x; X€RN & (In)(Ixl<n)}.
Obviously, FRN € BRN € RN ,

Theorem, Let x € BRN and O £ y € FRN, Then there is a finite
natural number n such that |x[<nlyl.

Proof. We may assum; X,y > 0. There are N4y Ny, ny such that
nyn, k0, x<n3 and y = 5= . Let n be such that nn, 7n2n3. Then we
have evidently x <ny.

Theorem. Let X be a non-empty class of finite rational numbers
containing-with each finite rational number x all finite rational
numbers y < x. Then there is a rational number 2z such that
X -{xeFRN; x<z} . If X ¢ FRN then z is bounded.

Proof. If X = FRN then, for each o €N - FN, X = {x ¢ FRN; x<«},
thus we shall assume X # FRN, If X has a maximal element in the
natural ordering £ of rationals then let z be this maximal element.
If FRN - X has a minimal element Z, in < then put z = Z, - %
for an infinite natural number o . Thus assume that FRN - X has no
minimum and X has no maximum, For each non-zero n, let F(n) be the
largest finite integer such that Eﬁ%) € X. The existence of such

a number is an easy consequence of the preceding theorem. -Gbviously,

.F_(Bl. < F(n+%) < F(n)+1 . If xe€X then there is an n # O such that
2 T oMt 28
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x < E-(%-) « This follows from the fact that X has no maximum. Indeed,
2
there is an y € X larger than x and an n £ O such that _117' £ Yy~-x
2

and hence x 41(%-) « Analogously, since FRN - X has no minimum, for
2

each x € FRN ~ X there is an n # O such that !-(-P-l;l < x. By the
. _ 5

axiom of prolongation, there is a function f such that F cf, dom (f)
ig an infinite natural number y’ , and for each « <« r we have

i.%"_). < 1. (ob{jf) < ffob) *1 | Piek an infinite x’o < ]f and put

g = ( °) . Since -(—)- < g < —Ln-)-i- for each finite n, we have
) g {x eFRN' XZzp . Moreover, zeBRN, since |z| < [P(1) + 1],

Two rational numbers x, y are said to be infinitely near
(notation' y) iff they satisfy one of the following eonditions:
(e) Ix-yl<« — for each non-zero né& FN, or
(b) n<x and n<y for each n € FN, or
(c) x <~nand y< - n for each n¢ FN,

Obviously, # is an equivalence,

Theorem. (1) If x ¢BRN, ye RN and x & y then y ¢ BRN,
(2) For each pair x,y of bounded ratiomals, xiy = (¥nko)(|x-y|< )
(3) For each pair x,y of finite rationals, x & y iff x = y,

Proof of (3) : 1If x # y then there is an n § O such that
Ix -yl >"1£ .
'I-‘heorem.' Let x and y be bounded rationals, x<£y and x net

infinitely near to y. Then there is a finite ratioral number z such

that x<z <y.
Proof. We may assume O<x, Let n £ O be such that % Ly =X,
Let m be the least natural number suech that x <§ + Then we evidently

‘haveiEAy.

Theorem, Let o4/ be an infinite natural number, Then for each

x € RN there isaa’ such that - o <f4,42 andx&-r— .
Proof. Put J”-max{/” -oo </34°(, & -vé-<x}.'l‘hen
x = .
o

Theorem, Let x, X4y ¥+ Y1 €BRN and assume x & x, and y & y,.
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Then x + y & X, + yi, X~y & Xy = Y99 Xo¥ - X4+Yqe Moreover, if
x
[ 3 [ ] x [ ] 1
“l(y = O) then —|(y1 & O) and y }T .

The reader should formulate analogous theorems for the case that
x or y is not bounded.

A rgtional number x is called infinitely small iff x = O,

Evidently each infinitely small rational number is bounded.
4§

Rationai’numbers x,y are said to determine the same real number
i1 ¥ & y. If we want to represent real numbers by some objects we
may identify real numbers with the elementa of the class BRN/a y OT
use an extensional coding of BRN/&, endowing it with appropriate
algebraic operations and an ordering. We shall see later that ther:
are some particular very useful codings of real numbers,

The results of this seetion show that our definition of real
numbers is sound. In a limit universe, our real numbers correspond
to classical real numbers since they form a linearly ordered field
which contains FRN as a dense subfield and such that each class of
reals having an upper bound has a least upper bound.

In a witnessed universe, real numbers are viewed as appropriate
approximations of rationals, useful for computations, For example,
there is no rational x such that x2 = 2, but there is a rational x
such that x2 £ 2 and consequently a real x such that x2 - 2,
Computations with real numbers are specific computations with rational
numbers characterized by the fact that infinitely small numbers are
disregarded. This is how real numbers are used in all applications.
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Section 3%

Ordinal numbers

In Chapter I, we introduced orderings of type L), The axiom of
two infinite cardinalities implies that the universal class V has
an ordering of type'_Q . Thus in our theory it suffices to work with
ordinal numbers "less than () ", i.e. ordinal numbers corresponding
to countable ordinals in Cantor’s set.theory.

We have the same reason for introducing ordinals & in Cahtor'a
set theory: our aim is to construet an appropriate canohical repre-
sentation of orderings of type Ll. We shall define the class of
ordinal numbers as a suitably chosen subclass of the class N of
natural numbers.

Theorem., There is a Z SN such that the canonical ordering =
of nmatural numbers restricted to Z is an ordering of type {1 and
such that oo_éﬂ , and aé,ﬂ € Z implies oa°"‘<ﬂ for each o¢, p

Proof. Let _4_* be an ordering of type L) on N. Put
7 = {ﬂ, (Yt 4*/6) (e 4 )4 . We prove that on Z the ordering <
and <¥ coincide. Assume od,/3 € 2 and o <¥f3. Then ¥« , thus
oL < ﬂ Conversely, assume oé-<ﬂ. If not 0(44*/3 then /3<*oo,
which implies ﬁ<06, which is impossible., This proves that =< and
=<* coincide on Z. Moreover, o6 Aﬁ and o, /8 € 27 implies o4°<'<ﬂ R
It suffices to show that the class Z is uncountable, Assume the
contrary. Define classes Z by induction over FN, putting Z’o =2,
Zoyq ™ {66“; o &2 p. For each n, Z_ 1is at most countable and
consequently the class Z = U{Zn; neFN} 1is countable. Thus Z is
a pemiset and UZ is a proper part of N. let f be the <*-first
element of N - UZ. Obviously, )"# Z. Let o 4*[; then e« eUTZ .
Hence o € UZn for some n; let [5 € Zn be such that o € ﬁ Then
o¢°é</>’ﬂ and ﬁﬂé Z,,1- This implies el and hence ot e J”t We
have prov.ed that oo <¥ / implies oéoéé J", thus (}f‘e Z; a contradiection,

From now on, {) denotes a fixed class satisfying the following:
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1) FH ¢ ,ﬁ cN a._r_:d each ol € ﬁ.- FN igs even.
2) It «, e ), wef and B¢ FN then £Fcff .

3) If =< is the natural ordering of natural numbers (i.e. o éﬁ iff
' oL eﬁ or c¢w/3) then <[),<> 1s an ordering of type (2,

Starting_ from ﬁ, we ghall construct another class satisfying
3) and FN_:C._(). ¢ N and having some good additlional properties, For
each J”E._Q we define clasaes p ({) by induction over FN, We put
Po(y) = {fs B=yand }f3 eﬁ}. Ppot () = {us i otyfen (r)hu
U {ot..ﬁ;‘ oé,ﬁe pn(y’)} finally we put p(’yv) = U{p,(y)s nern},
Evidently, for each o, B€ fl such that €3 and B¢ PN we have
p(«) ¢ 8. Observe that for each & (i FN we have
p(af)n {d,mrm Yeyot od1)r‘+ s MEFN B ofyer. b€ U{p(ﬁ); ﬁe[ and

we put L= U{p(y) e {3} and ca1) ) the class of all
ordinal numbers.

“%Theorem. {f),£> is an ordering of type {l. (< is the nmatural
ordering of natural numbers.)

Proof. Since f): € (), the class {1 is uncountable. Obviously,
for each o & {1 the segment {/3 e ); /’) “ oc} is at most countable.
Thus it suffices to show that < is a well-ordering of {1, For this
purpose it suffices to show that the class p(y) is well-ordered by
< for each ___f 3 ﬁ. Asegume the contrary and let Jf ve the first
element of (1 such that p(f) is not well-ordered. Evidently, Jr is
infirite, Let {ﬁn; neFN} be a descencing sequence of elements of
p(f) Each /311 can be written in the form of a polynomial
04me oo + ol where e ,. ..ol e‘:U{;p(ﬁ); /36(/'! -()-} : Tix for
each ﬂn one such expression, It ie 2a3y to show that one ecan find
an descending sequence consisting of some coefficients of our
countadly many polynomials; but this is & contradietion.

We have FN Ec().. € N and the class JL is closed under addition _
and multiplication of natural numbers. One can easily check that
these operations coincide for crdinal numbers with ordinsl addition
and multiplication defined as usuzl. Fach limit ordinal number -ig
even, The first element of (I ~ PN (the first infinite ordinal num‘-Jer)
is denoted by 4J).

Theré are various possible formulaticns ¢f the theorem on

-

definition by transfinite recursien; ws shall present two of them,
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They will be frequently used. Since their proofs are analogous to
proofs of corresponding theorems on recursion over FN, we shall only
outline them,

Theorem. Let (f(X,Y) be a formula and assume (VY)(H!X)Y(X,Y). :
Then there is exactly one relation R such that dom(R) ¢ {0 and such
that for each ot €f) we have tf(R"{oo} » R Mz n Q1))

Proof. Let (x,o(:) be the formula
dom(X) conf) & Rel(X) & ot e & (VB)(Bexn 2 s y(x{BY; XMBAQ)).
Put R = U {X; (Jet € Q) (X, )} . R has all the desired properties.
The uniqueness is evident,

Theorem. Let \p(x,Y) be a formula and assume that for each at
most countable Y there is an x such that (x.Y). Then there is a
function F such that dom(F) = () and (f(F %), P/ (L)) for each
o € 0. :

Proof. Let R be a well-ordering of V. Let ¢ (x,Y) hold if
either Y is uncountable and x = O or Y is at most countable and x
is the first element such that ('o(x,Y) (w.r.t. the well-ordering R).
rhen (V1) (Jix) Lfo(x,Y) and for all at most countable Y, ( (x,Y)
implies Y(x,Y). Let (II(G,oz,) be the formula
wel) g dom(G) = £ nSL & (Vﬁéocn ﬂ)‘fo(G (B); ¢} (p h-o-)).

Put F = U{6; (Joc € L)y (G, ¢ )}; ¥ has the desired properties.

We shall now present two examples of definition by transfinite
recursion.

An operation O associating with each countable sequence
{xn; n eFN} of classes from the extended universe a class
6({Xn; neFN}) from the extended universe will be called an
&) ~gperation. Clearly, a sequence {xn; nEFN} is coded as the
relation R such that dom(R) SFN and R*{n} = X for each neFN; thus
an W-~operation can be understood as an operation associating with
each relation R from the extended universe (satisfying dom(R) < FN)
a class from the extended universe,

Let # be a codable class and let ¢ be an w-operation. M is
said to be closed under & if for each sequence {Xn; neFN} of

elements of /L the class O’({Xn; neFN}) belongs to U .
/ .
Pheorem. Let & be a codable class and let ¢ be an «)-operation.

Then there is a codable class #! such that
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1) Al 3
2) 7 is closed under O;
3) if Jl, is a codable class satisfying 1) and 2) then Jfl < ..

Proof. Let {X,%) code the class vP¥ of 211 countable

sequences of gets. We construct sequences {Koé; ol e_()_} and

{So‘;; o € {1} by recursion over (1. Let <K°,S°> be a coding of .
Let now yA 0, fefl.Put ¥ = {<x,ut>; vepn gxex,} and
% . {(y,(x,&)}; <x,o¢_>e:_f &yesS, {x}} . Purthermore, put

gr - {x; xeX & §"{x} € Km} . Thus (Kf, B> codes YR, put

S = {(w,x); xeky & (d2,y,n)(Lz,mn 7y e 5xl g ye'sg"{z} &w -<y,xb)}.
Thus <K r,g >vcodes the e¢lass of ai_l_l relations R such that

dom(R) < F¥and (Yn)(3 z)(R"{g} = §"2}) . Pinally we put

Sy = {<yx s xeKy gye O’(S"{x})} . Thus <K )"SY> codes the
clags of all classes G(R) where R is as above, Having construected
{Ky Sy for each ot € {) we put

K = {(x, i ot e f) &xek _},

S = {(y,(x, W Wi<xe> L& Y€ Sd"{x}} . The class # coded

by <K,S7) has the desired properties.

The class m is determined uniquely by ?Z; we shall eall m
the closure of L w.r.t. 0. The reader can easily generalize the
above construction for the case of several ¢ -operations.

We ghall now prove some theorems enabling us to transfer easily
some Tesults of Cantor’s set theory into our theory.

Theorem. There is a relation S such that { (1,5 codes
extensionally Pw(_().) and S™p< o for each o € Q.

Proof. et F be a one-one mapping of 2 onto V. By the axiom
of prolongation, for each at most countable class X & L)l the class
{¥; flny =X} 1is uncountable. Thus {ot§ LLn F(w)= X} is un-
countable., We define a class Z £ {) by induction over () as follows:
for eQ, yez iff ?( )n_()..éfnZand
(Ve efn ) (F(<)n 04 F(y) nQ). Put
S, = {<PB,t)>; Lel & feF(e)n £}, Obviously,

S;‘{.&}- F(v)n L) = F(w)nZ for each o ¢ Z. If o, (3 are distinet
elements of Z then S!{} # S§{A}. If XS2Z is an at most countable
¢lags then let be the first ordinal number such that Xéy’ and
F(r)n {L = Z, Then L€ Z. Conseguently <Z,S1> codes extensionally
PO(Z) and Z is uncountable. Let & be a one~cone mapping of () onto Z
preserving the vatural ordering £ . Put Sw f:’(oé ,ﬂ);(G(ob). G(ﬂ)>551}-
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Then {f1,8) has all the desired propert_ies.

Theorem. There is a class A satisfying the following:
1) (Vx,yea)(x =y 1£f xnA = yn4A);
2) (Yx e A)(xnA is at most countable);
3) (Vxea)(X at most countable => (Jxea)(X = xnh));

4) (YxcAa)(xer).

Proof., Let (..().,87 be as in the preceding theorem, Ol;viously,
S"{O} = @, Let G be a one-one mapping of ) onto V., We construct a
function P by induction. Let oc€ {L. If S"{x} is a finite set then
put F(w) = F'S"{et} . If 5"t} is countable then there is a ye (L
guch that F"S"{ob}g G({), G(y’)nl"'(oc- S"{oc}) =@, (6 (J’)) > ‘t(x)
for each x €', G(f)n (Pn(F".,(,) - F"8"{w})) = § for each n, where
Po(x) = B(R(+.. (B(X))-..)) (m time). In this case we put F(«)= G(p)
where J" is the first ordinal number such that G(r) is as above, It
suffices to put A = F*{) ; A has all desired properties.,

The class A guaranteed by the preceding theorem can be viewed
as a model of the Cantorian universe of hereditarily countable sets.,
This enables us to translate all results concerning the Cantorian
universe of hereditarily countable sets inte results concerning the
class A. Of particular interest are results concerning subclasses
of FN and not mentioning A. It is easily seen that A is not determined
uniquely.
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Section ‘4

Ultrafilters

The notion of an ultrafilter is a typical example of a notion
whose importance is not confined to Cantor’s set theory. Am ultra-
filter can be understood as splitting a family of properties into
two mutually dual parts.

We shall deal with codable classes in order to achieve the
greatest generality; this is necessary because of the general nature
of the notions we are going to study. Onx the other hand, we shall
study ultrafilters only on rings of classes, which simplifies some
formulations,

" German letters #, N, %, ? » PoB8ibly indexed, will be used
as variables for codable classes. The meaning of expressions % < ]l ’

w = W, nm2 , ete. is clear.

A is called a ring of classes iff

(1) U# is an infinite class and U ¢ &,

(2) (Ya)(YI)x,Ye® = xnY e R),

(3) (Vi)xe®=> (UA-x)e®R), and

(4) if Y e® and X has at least two elements then there is a proper
non-empty subclass Y of X such that ¥ ¢ z.

Let us mention at least the following examples: P(x) for each
infinite set x, Vv {V - X} X eV} ’ PQ(X) for each countable clasa,
ete. '

In the whole seection, % denotes a ring of clasaes.

Theorem; If X,Ye% then IuYe% and X -'f e ® R _
Proof. X - ¥ = Xn{UR - Y); xutY = UR ~((U%-x)n‘(uj€-“y)).
Note that we obtain e & as an immediate consequence,

A class W 1s a filter on & iff
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(1) % is a non-empty proper subclass of V H
(2) (VX,Y € 7}Z)(x nY e WZ), 1.6, I is closed under intersection;
(3) (VX € m)(VY € Z)(X SY=>Ye¢ 7 , 1ee. M is closed under

taking superclasses,

7 18 an ultrafilter iff, in addition, ‘
(4) (VXGZ)(X e W v (UZ- X)er), i,e, either X or the complement
oi)? X belongs to /A , for each X ¢ z .

Note that if & is a filter on & then g ¢ 7% .

3

B

Theorem, Let W £ B, M+t P, 8 ¢ A, and 1et M e dually
directed by inclusion. Then {X e&; (Y e ) (1<X)} 18 a filter
on Z‘

The following theorem shows that an ultrafilter can be viewed
as a partition of # into two dual parts.

Theorgm. Let m1, mz be two disjoint classes whose union is
. Assume that both. m1 and mz are closed under intersectien
and let, for each X ¢ &, X e M, 1rf (UR- X) € Ml . Then either
m1 or mz ig an ultrafilter on #.

Proof. Assume Ul e ?ﬂﬁ then ¢ € QZZ‘ We prove that %1 is
an ultrafilter on #. The conditions (1), (2), (4) hold evidently for
!m1. We prove (3). Assume X € %1, Ye®, and XSY, If Y ¢ 7%1
then (U2 - Y) € m1 and hence § = X n (UZ- Y) ¢ m1, a cor_ltfadiction.

Thus Y € m1, which concludes the proof,

Theorem, For each filter n on 2, there is an ultrafilter f/l
on @ such that X € &L,

Proof. If & is uncountable then it has an enumeration

{xd‘; ol c_O.}‘ 3 if it is countable then it has an enumeration
{xoc; oc,eFN} . Thus let {Xc(l; ol € A} be such an enumeration where
A is either CL or FN, We construct a class A,ch by recurasion. For
each y €A, we put y€A 1iff for each X €N and each set v syna,
we have X ,n XnN {X,, ot € v} # B. We now define

W o={x; (Jcenr )(x = X )b, Evidently % < 3 the reader can
eagily verify that % is an ultrafilter on & .

An ultrafilter # on & is trivial iff there is a y such that
{y} <M. Bvidently A is trivial iff there is a finite set u such
that u e M.
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Theorem, Let # be a filter on # not containing any finite set,
Then there is a non-~trivial ultrafilter % on 2 such that ﬂ € % .

Proof. Let 7Z consist of all classes of the form (U Z- u),
vhere uisa finite set and u € £. Put

~{2e¢%; (Hx e )(AYeZ)(xnvcz)p . then X< ana X,
ie a filter on &, is an ultrafilter on # extending %1 then
#! cannot contain any finite set.

A class 7 is an ideal on # it

(1 ') ] is a non-empty proper subclass of Z

(2°) (Vx,Y € ])(x vY ¢ J), i.e. J 18 closed under union;

(3°) (Wx e J) (VY e R)(Y<x = Ye J), i.e. ] is closed under taking
subclasses.

J is a prime ideal if, in addition,

(47) (VxeB)xe] v (UR- x)€7)°

The duality between filters and ideals is so obvious that
results on filters can be immediately translated into results on
ideals and vice versa. Therefore we shall not consider ideals in the
present section,

A countable sequence {xn, neFN} is descending iff Xn+1 < xn
for each n. A class # is w-complete (from above) iff M is non-
-empty, no element of M is a finite set, and for each descending
sequence {xn, née¢ FN} of elements of % there is an X ¢ euch that

ﬂ{x neFN}

Obaerve that each W-complete ultrafilter A on Z is non-trivial,

Theorem. Let % ve an W=-complete subeclass of # such that for
each infinite X ¢ # there is a Y€ # such that Y& X, Then there is
an @ -complete ultrafilter # on & .

~ Proof. Obviously, 7/ is uncountabie. Let {x ; €M} vean
enumeration of elements of £ . We construet a sequence {Y H oceﬂ}
by recursion as follows: Y - is ‘the first element of (w.r t. to
the given enumeration) such that Y ¢ ﬂ{Y ﬂe oL n_Q} and either
Y €X, or Y nX,= R Obviously, Y, exists for each <€), Put
= {Xe R; (3066 .Q.) o € )} . It is easy to vérify that # is an

W=-complete ultrafilter on z.

The axiom of prolongation implies that the class of all infinite
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sets is w-complete. Thus we have the following.

Corollary. Let x be an infinite set. Then there is an (J~complete
ultrafilter 2 on the ring P(x) of all subsets of x.
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Section 5

Bapic languages

The language of mathematics is one of the traditional mathenma-
tical etructures and has been frequently subjected to mathematieal
investigation. In the present section we are going to conastruct basie
languages for a description of the extended universe, The construe-
tion proceeds inside our theory.

We use formulas to express some properties of sets and classes,
Formulas of a certain language are particular sequences of aymbols
of an alphabet, formed according to some exact syntactiec rules, In
each particular case we could deal with a finite alphabet;
nevertheless, it is convenient to use a potentially infinite alphabet,

Our alphabet consiste of the following systems of signss
(1) Specific symbols €, =, &, v, =, =, —, I, V, ), (.
(2) Variables for sets from the universe of sets: - T
(3) Variables for classes from the extende@ universe: Xo, 11, PN
(4) Constants for sets from the universe of sets.

Since our aim is to construct the language inside the universe
of sets, we shall proceed analogously to the construction of natural
numbers., Some sets will be ildentified with signs, This can be
achieved in various ways; we choose the following:

(1) The sets <0,0), <1,0%>, ..., <10,0) are (code) the signs
: €, =, &, v,=,=, =, 3, ¥V, ), (, respectively.
(2) <ets1> 1is (codes) the variable x ,, for each « € N,
(3) {«,2) is (codes) the variable X , , for each « ¢ N.
(4) <x,3) is (codes) the constant denoting x, for each x ¢V,
We put Const = {(x.3); xevp.,

The alphabet Alph is the class consisting of all sets (1) - (4).
A word is a function f such that dom(f)e& N and rng(f)€Alph. The class
of all words is denoted by Word,

From now on, we shall freely use the original signs and
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sequences of signs since the coding by sets will always be immediate.
Let C be a class.

Formulas of the language I‘C are words obtainable by the
following rules: )
(1) Atomic_formulas of L, are words MeA, N= A, IMe 11 where [,
A are variables or constants for elements of C.
(2) If ¢ and ¥ are formulas of Ly and I' 1s & variable then the

following words are formulas of Ln:

(Pay) (pryh (y=yp)(p=y)le), (A0, (\M)y .

The class of all formulas of Lc will be denoted by I‘C' It can
be defined using recursion over N; thus Lc is set-theoretically
definable.

A formula {f of Lg is normal if no class variable is quantified
in @3 y’ is a set-formula if no class variable occurs in 50.

L is the class of formulas containing no constants. Obviously,
L is set-theoretically definable, L = ‘L¢.

We shall freely use common symbolism. For example denoting a
formula of I’C by V(xo,x1) we mean implicitly that all variables
distinct from Xor X4 and occuring in l/ are quantified in 7 (i.e.
y has no free variables distinct from > x1). If lf(xo,x1) is &
formula and if q is a constant then y(xo,q) ‘denoctes the formula
resulting from tf by replacing all free occurences of X4 by q, etc.

"Like natural numbers, formulas have been constructed inside
the universe of sets., From now on, we shall investigate the language
LC from the point of view of the extended universe.

FLC denotes the class (1anguage) of all formulas of Lc such
that '
(1) yis a finite set (a finite sequence) ;
(2) If the variable x, or XOC ocecurs in LI/ then o € FR,

We further put FL = FL¢. Evidently, FL is a countable class.

We already know that some properties of sets (f‘fom the universge
of sets) can be expressed by set-formulas of LC. Let us now ask the
converse question, namely, which formulas of LC can be recognized
as expressing some properties of sets. The question is, which formu-

8



las can be read, i.e. understood. We can read atomie formulas; if
we can read tf and y then we can read each formula formed from them
using rule (2) of the definition of formulas. Thus each formula of
FLg can be understood. It is possible that also some other formulas
can be understood; but we cannot be sure at present, Iater we shall
see that the axiom of prolongation makes such a hypothesis possible,

We shall now be more expliecit on the notion of set-theoretically
definable classes. From now on, a class X is called set-theoretically
definable (notation: Sd (X)) 1ff there is a set-formula (p(x )¢ Fly
such that X = {xo, y(xo)} « Evidently, each set ig a set-theoreti-
‘cally definable class. The following theorem shows our definition of
set~-theoretically definable classes is sound:

Theorem. The class {X; sd(X)} 1is codable.

1
Proof. Let K be the class of all formulas ¢(x) € Fly with one

free variable. We define a relation S with dom(S)€ K by induction
‘over FN as follows: For atomic ¢, we put S“{?(xo)} ={x.; so(xo)} .
If ¢ 18 9,(x;) & (fz(xo) then we put

s {(p(x9)} = S" {(h(x % A S"{Yz(x Vb 5 11 o is —1Y,(x,) then we
put S"{¢ (x )} =V - S"{‘h(x )} . Similarly for other connectives.
1t &f(x) is (3x1) Lh( ot Xq) then we put

st {p(x, )} = U{s"{ ¢ (x5» a)}s a€Const} . Similarly fer V.

A pedantical definition proceeds by recursion on the number of
quantifiers in y. The coding pair <K,S) codes {%; sa(x)} .

Now we have to reformulate the axiom of induction in such a way
that it admits exactly set-~theoretically definable classes. We obtain
the following formulation:

(Axiom of induction.)

(Vx)(sa(x) & Pex & (Vxex {(Vy)(xu{y} e X)=> X = ¥).

It can be seen that this reformulation does not affeet any
particular results obtained till now, The reformulation would have
to be taken into account if the theory were formalisged.

- X=X -x=

A class X 1s called revealed if for each countable Y £ X there
is a set u such that Yeu <X,

Theorem. Let Xnu be a set for each set u. Then X is revealed.
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Proof. Let Y£X, Y countable. There is a set v such that Y,
Put u = Inv. Then YEu<X,

Corollary. Each set-theoretically definable class is revealed.

Pheorem. (1) If<X, Y are fevealed then XuY is revealed,
(2) If {X 3 neFN} is a sequence of revealed classes then
N{X; neFN} is a revealed class.

Proof of (2). Let Y be a countable subclass of n{xn; neFN}.
There is a seguence {un; neFN} of gsets such that Y_C.unéxn for
each n. Thus Ysﬂ{ﬁn; neFN} ., By a consequence of the axiom of
prolongation, there is a set u such that YSuEﬂ{un; nefN},

Pheorem., Let {xn; ne PN} be a sequence of revealed classes
such that for each m € FN, N4 X3 n=m} is non-empty. Then
ﬂ{xn; nePFN} £ 9. : '

Proof. For each n, choose x, e X n ... 0 X . Put Y, -{x ; n=:
Each Y is at most countable and we have Y € x for each n., Thus
there is a sequence {un, neFN } of sets such that Y €u €X for
each n. Since X €U N eeenuy each finite subecolleection of
{u ; neFN} has non-empty 1ntersection. The axiom of prolongation
implies N{u ; neFN} £ P But N{u ;neFN}pc N{X ; neFN},

Theorem. Let {xn; neFN} be a descending sequence of revealed
classes, Put X = ﬂ{xn; n e FN } + Then dom(X) = N {dom(xn); nePN }.

Proof. Obviously, dom(X) & 1 {dom (X)) ne FN .
X € n{dom(x ); neFN} ., Then{x n(Vx { b) s neFN} is a descendi
sequence of revealed non-empty classes and hence

g # N{x n(Vx{x}); neFN} = X"{x} .

A class X is a & -class (a M ~-class) if X is the union (the in
tersection) of a countable sequence of set-theoretically definable
classes. We can analogously define ¢ f-classes, Fo-classes etc.

Theorem.
(1) The class of all 0 -classes and the class of all W-classes ar
codable.,

(2) X is a O ~clasa iff X is the union of a countable ascendling
sequence of set-theoretically definable classes., X is a 9-cla
iff X is the intersection of a countable descending sequence o
set-theoretically definable classes.
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(3) The union of two T(-classes is a 9~class. The intersection of
two ¢’-classes 1s a C-class, ,

(4) The union of a countable sequence of 6'-classes is a G-class,
The intersection of a countable sequence of 9-classes is a
J~-class.

(5) If X, Y are G-classes (9T-classes) then X xY is a G =class
(a sr-class),

(6) Pach 97 -class is revealed.

(7) 1f X is a G -class (a 9r-class) then dom(X) is a G-class
(a Tr-class).

f

Proof. (1) - (5) are obvious, (6) Each set-theoretically
definable class is revealed and revealed classes are closed under
‘countable intersection, (7) The assertion is obvious for o -classes.
It X is a r.;vZ"-clauss then X is an intersection of countably many re-
vealed classes X _; n € FN; and for such classes we have proved

dom (N{X 3 neFi})= N{dom(X); neFN} .

Theorem., X is both a ¢ -class and a -eclass iff X is set-
-theoretically definable,
&£

Proof. The implication <= is obvious; we prove => , Let X be
both a & -class and a 9-class, Then X is revealed and is the union
of an ascending sequence {Xn; ne FN} of set-theoretically definable
classes. lWewgrove that X = X for some n., Assume that Xn is a proper
subclass of X ,q for each n. Let {yn: neFN ) be a sequence such
that y e X, , - X, for each n. Let v be a set such that v <X and
Yy, € v for eagh n, Then vn(V-Xn) # @ for each n; but since each class
vn(V—-’in) is revealed we have vall <V-Xn; nefN} £ ¢ , hence
va(V-X) # #, which contradicts v ¢X.
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Chapter III

Topological shapes

One of the most important aims of mathematics is to master
continuum phenomena. If we observe a set but are unable to identify
(distinguish) its individuval elemente, becanse they lie beyond the
horizon of our observational capability, we encounter a continuum
phenomenon. Thus, for example, when we obeerve a heap of sand from
a sufficient distance it appers to be continuous.

When treatingccontinuumﬂphenomena mathématically we shall
accept the hypothesis that all continuum phenomena are produced by
such observation of large but remote seta or classes, This hypo-
thesis is in accordance with the aims of set theory.

" We conclude that continuum phenomena are due to the indiscer-
nibility of particular elements of the observed class. The relation
of indiscernibility is evidently reflexive and symmetric, In the
present chaptef we confine ourselves to tramsitive relations of
indiscernibility, hence to equivalences., This enablee us to treat
continuum phenomena classically. This is achieved by decompesing a
continuum-phenomenon into points -~ specific codes of mutually
indiscernible elements of the observed class.

One characteristic property of a set is its shape. The shape
of a set depends indeed on the method of observation, thus on the
corresponding equivalence relation of indiscernibility. For example,
if we observe & book (consisting of molecules] ve perceive a shape
entirely different from the shape perceived by an observer the size
of a molecule, Needless to say, we do not restrict ourselves to
optical observation.

The present chapter is devoted to the study of properties of
shapes determined only by the equivalence relation of indiscerni-
bility, thus to topological problems, But we shall not restrict our-
selves to shapes of sets and shall investigate also shapes of classes,
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Section 1

Equivalences of indisecernibility

‘The mathematical counterpart of the notion of indiscernibility
is an equivalence relation having some additional properties. Each
observation produces a sequence of criteria of discernibility. Two
objects are indiscernible under such an observation if all criteria
fail to distinguish beiween them, This leada us to the requirement
that an equivalence of indiscernibility should be the intersection.
of c¢ountably many set-theoretically definable classes,

A class & is a F-equivalence if & is a W-class and an
equivalence relation. A sequence {Bn; neFN} is a generating
. sequence of an equivalence & iff the following conditions hold:
(1) For each n, R is a set-theoretically definable, reflexive, N
and symmetric relation. : o
(2) PFor each n and each x, y, 2z, {xX,¥) € Rn+1 and. <y,z)e R
implies <x,2) ¢ R; R =V

0
(3) % is the intersection of all the classes R ,

I {Rn; neFN} is a generating sequence ‘of & then & is a
SL-equivalence, R _, SR, for each n, and x & y holds iff (x,y) € R,
" for each n.

n+l =

Theorem, Each 9(-equivalence has a generating sequence.

Proof. Let & be a gl-equivalence. Then & is the interaection of
countably many set-theoretically definable classes {%; neFN} . We
can assume without loss of generality that the last sequence is _
descending. Put S =X n X » Then {S ; nel’N} satisfies everything
we have claimed for {X H n eFN} and in addition, each’ relation S
is reflexive and symmetric. We claim that for each m there is an
nym such that for each x, ¥, 2, {x,¥) € Sn and {y,z) ¢ Sn implies
<x,z> € Sm. Agsume the contrary and let, for each n)m, X Yo Zp
be such that <XV € Sy <yn,zn) € 5 but <xn’zn> v S
By the axiom of prolongation, there are x, y, z such that {x,z) ¢ 5,
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but {x,y ) €S, and (y,z)€S, for each npm, Thus x & y and y & 1,
hence x &= z and <x,z> € S,, which is a contradiction, This proves
our claim, Consequently, there is a subsequence {Rn; né.!'N} of
{8,; neFN } such that N{R ; neFN} = (1{5 ; nePN} and for each
n and each x, y, 2, <x,y)e R,,q and {y.2V¢€ R, 4q implies

{x,z)€ R . This concludes the proof,

Let {Rn; n € FN } be a generating sequence of = and let u be

a set., A sequence {roL; o £ ¥} is a prolongation of { R i nePN}
on u if the following conditions hold:
(0) {r s w<2} isa setand zeN - PN,
(1) For each o« =%, r, is a reflexive and symmetriec relation on u.
(2) Por each ot< ¥ and each x, y, £, <X,y) €z, , and

‘ <y,z) € r“§1 implies {x,z)e€rx, .
(3) r, = R nu® for each n.

(4) T, = {n<x,x); xeu}.

The following theorem is a direct consequence of the axiom of
prolongation:

Theorem. Let {Rn; neFN} be a generating sequence of % ,
Then for each u there is a sequence {r } <L 'g} prolonging the
former sequence on u,

We shall formulate a further condition imposed on equivalences
of indiscernibility. It results from the following consideration: no
infinite set lies before the horizon. Thus each infinite set of
observed objects has at least one pair of mutually indiscernible
elements. )

An equivalence & is said to be compact if for each infinite set
u there are x,y €u such that x 4y and x & y.

Let R be a symmetric relation. A class X is an R-net iff there
are no distinct elements x,y € X such that (x,y)é R, X is a maximal
R-net on Z if X£2Z and for each z€2Z there is an x €X such that

{x,zy€R.

Evidently, each subclass of an R-net is an R-net.

A relation R is an upper bound of an equivalence = if R is

symmetrical, set-theoretically definable and % is a subclass of R,
i.e, x & y implies <x,y>eR for each x,y.
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Theorem. Let = be a compact equivalence and let R he its upper
bound. Then there is a finite number n such that for each R-net X
we have XXn.

Proof. Assume that for each n there is an R-net u baving exactly
n elementas. By the axiom of prolongation, there is an o« &N - PN and
an R-net u such that o & u. Thus u is infinite and there are X,y €u
such that x # y and x & y. This implies <x,y)> € R and hence x = y,
which is a contradietion.

Corellary. Under the assumptione of the preceding theorem, each
R~net is a met. :

Theorem, Let & be a compact equivalence and let R be its upper
bound. Then for each Z there is a set u which is a maximal R-net
on 2,

Proof. Take an R-net u<cZ having .the maximal possible number of
elements,

Theorem, Let {Rn;'n eFN} be a generating sequence of an
aguivalence & . Let {un; neFN} be 2 sequence of sets such that
for each n u, is a maximal R -net on X. If U {u ; neFN}cu then
for each x ¢X there is a y€u such that x ¢ y,

Proof. Let x e X. There is a sequence {yn; neFN} such that,
for each n, y,<w, and <Xy, € R . We have y_eu for each n; by
the axiom of prolongation, there is a y eu such that <x,y> € Rn
for each n, hence x = y,

Thecrem. Let & be a A~equivalence. Then the following properties
are equivalent:
(1) & is compact; : :
(2) for each Je N - FN, there is a set u such that u 2/’ and for
each x there is a y ¢u such that x & y;.
”(?) each infinite set u has an infinite subset v Such that for each

X,JEV we have x & y.

Proof. Let {Rn; ne€FN} be a generating sequence of & ,
The implication (3) = (1) is trivial, We prove (1) = (2). Let
{un; ne¢ PN} be a sequence of finite sets such that for each n u, 1is
a maximal Rn-net onV, Put Y = U {un; néFN} . Y is at most countable,
Consequently, for each infinite y there ie a 3¢t uw such that Yecu
and u :?: ¥ By the preceding theorem, fcr each x there is a y éu such
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‘that x = y.

(2) =» (3). Let u be an infinite set. Take a y ¢ PN such that
2 % u, Let w be such that vg)r and (Vx)(3yew)(x % y). Let

{recg'o(. < T} be a prolengation of {Rn; ‘nePN} on uvuw, For xgu
let g(x) be the maximal o< % such that wn {yeuuw; {x,y) ¢ 1, }#
# @. For each x eu, g(x) is infinite, Pix a linear ordering of w
which is a sety(and for each x¢eu, let f(x). be the first element of
w such that {x,f(x))> ¢ Talw) * Evidently, x & f(x) for each xew, .
Since f maps u into w and since er and 12-4 v, there is a yevw
such that the set v = {xeu, f(x) = y} is infinite., For each xe& v
ve have x & f(x) = y; thus fér each x1,x2ev ve have x, & x2.

A relation % is called an indiscernibilitv eguivalence iff %
iz a compact YU-equivalence,

Jt follows. by the preceding theorem that the equivalence of
infinite nearness of rational numbers defined ':ln-Chapter II Seetion
2 is an indiscernibility equivalence,

Theorem. Let {- H neFN} ‘be a sequence of 1ndiscernibility
.equivalences. Then N {-n; ne PN} -is an indiscernibility equivalence.

Proof. Evidently, N {-n; neFN} is an equivalence and a
o-class, It remains to prove that it is compact, Let u be an infinite
gset, There is a ‘descending sequence {v H neFN} of subsets of wu
such that for each n and each X,y €V, we have x =¥ and v is
infinite. The intersection of the sets Y has at lealt two elements
" x by (by the axiom of prolongation). Thus x,y €u and x = y for
each n, ' ' ‘

An equivalence =, is finer than =, (and = 'is eoarser than -1)
if x -7y implies x =Yy for each x,y.

Theoreni. If - ig finer than =, and = ig compact then = is
also compact.
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Section 2
Figures

Throughout this section, = denotes a fixed indiscernibility
relatien and {R neFN} its generating sequence. Wo put

o(x,n) ={y; <x,¥) €Ry b
To the notion of figure we are led by the following observation.

Two indiscernible claoses have the same shape and determine
the pame figures. Figures are defined as follows:

A class X is a figure iff X econtains with each x all y such
that x = y.

We use sets from the universe of sets both for coding objects -
and for coding classes of objects. In the former case we shall use
the terﬂ*"po}nt“ ag synonymous with "set".

We shall not always use all properties of indiscernibility
relations and therefore we could study more general topologies as
in Cantor’s set theory. The author has developed general topology
in the alternative set fheory, ‘interesting results in such topology
were obtained by J, ChudéBek. But we shall not develop general
topology here before deeper motivations for its study in alternative
set theory are exhibited.

Theorem. (1) ¢ and V are figﬁres. If X, Y are figures, then.
XuY, XnY and X - Y are figures. (2) Let y(x) be a property of
classes of the extended universe such that y(x) implies that X is .
a figure. Then Y {X; 2 (X)} and {X; P(X)} are figures.

We define the monad of a point x as follows.
Mon(x) ={y; ¥ & x}.

Evidently, Mon(x) is a figure for each x. A class X is a figure
iff the monad cf each element of X is a subclass of X,
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The figure of X is defined for each X as follows:
Fig(X) = {y; (3xeX)(x * y)}.

Theorem, For each X, Y, x we have the following:
(1) Pig(X) 1s a figure, -
(2) XeY implies Fig(Xx) < mg(Y)
(3) If XcY and if Y is a figure then Fig(X)<Y.
(4) Pig(XuY) = Fig(X)u Fig(Y).
(5) Pig(X)n Fig(Y) = § iff Fig(X)nY =g ,
(6) Mon(x) = Fig ({x}).

Theorem, If X is set-theoretically definable then Fig(x) is
a N-class.

Proof. Put X = U {o(x,n); xex} Each X is set-theoretically

definable, X ., _x and Pig(X) <N {I neFN} . We prove the conver:
inelusion, Let 2z be a point such that 2z exn for each n, Thus for each
n there is an x,€ x such that zeo(x yn). Let u<X be sueh that

X, €u for each n and let {rec $ oL = 1} be a prolongation of

{R ; n€eFN} on u, There is an. «¢ FN and an x €u such that

(x.z) €r, i consequently, xeX and & €o(x,n) for each n, which

implies x % z and hence & € Fig(X),

In the sequal we shall introduce various natural notions; it
seems to be superfluous to give an explicit motivation for each of

themn,

I, Y are separable (notation: Sep(x,Y)) iff there is a set-
-theoretically definable class .Z such that Pig(X)<Z and Fig(Y)n Zag.

Evidently, X and Y are separable iff Pig(X) and Pig(Y) are.

Theorem. Let X and Y be two figures and ‘Z’-classes. Then X, Y
are aeparable iff they are disjoint,

Proof. Assume XnY = §. Let X = N {X ; neFN}, Y -n{rn; néINI
where all X and Y are get-theoretically definable and Xn+1 <
Yn+1' Y for each n. If X n Y were non-enpty for each n then we
vouldhave ﬂ{x nY,neFN};‘¢, thus XnY £ §. Hence X n Y =
for some n and X, Y are separable. The converse :lmplication 15

obvious,

The closure of s class X is denoted by X and defined as follows:

{x; ﬂSep({x} , X‘)}.
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Theorem, For each X, Y we have the following:
(1) X is a tigure.
(2) Pig(X) = Fig(Y) implies ¥ = ¥,
(3) xeX.
(4) X<€Y implies X cV¥.
(5) ¥oY = X Y.

Theorem. x ¢ X iff o(x,n)n X £ P for each n, | ,

Proof, First, assume x ¢X and let n be such that o(x,n)n X » #,
We prove o(x,n+1)n Pig(X) = @. Assume 2 ¢ o(x,n+1) n Fig(X). Then there
is a yeX such that y = z and thus (y,z) € Rn+1‘ But then (x,y)eR
and yeo(x,n)n X, which is a contradietion,

n

Conversely, let o(x,n)nX § ¢ for each n, Assume x ¢ X; then
there is a set-theoretically definable class Z such that Mon(x) ¢ 2
and Zn Pig(X) = ¢, But o(x,n)n (Vv - 2) ¢ @ for each n, thus there is
a yeV.- % such that y & x, and hence Mon(x)n (V = 2) £ @, which is
a eofitradiction.

Theorem, For each X, ¥ = X.

Proof. Obviously, ¥ <X, Let g €J, Take an nj there is a
y €o(z,m+1)n X, Since y e X, there is an x € X such that
xe o(y,n+1) n X. This implies x¢ o(z,n), hence o(z,n)n X ¢ §. We have
proved gz € X.

Note that the closure operation is here derived from the
indiscernibility relation in contradistinction to classiecal topology
where the closure operation is itaken as the basic operation.

A class Y is dense in X if YSX<Y. Obviously, if Y is dense
in X then Y = X,

Thebrem. Let {un; n eFN} be a sequenece of classes such that,
for each n, u, is a maximal R ~net on X, Then U {un; n éFN} is
dense in X,

M. Obviously, U {un; neFN} € X, Let x X, Then for each
n there is a ¥, € v, such that <xyy,” €R,. This means that
o(x,n) n U{uy; neFN} 4 @ for each n and hence x belongs to the
closure of (J{u,; n&FN b o

Corollary. Each X has a dense subclass Y which is at most
countable,
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Theorem., Let X be at most countable. Then there is a set u suech
that X is dense in u. '

.
Proof. Let {u, ; ne N} be a sequence of maximal R -nets on X,
Put ¥ -U{u $ ne PN}, Since Y is dense in X, we have x Y. Let v
be a set such that XEv, Put v = {yev; (eru J(Kxyy) e R )} ¥e
have XSv € v. Thus there is a "set u such that X€u g N{v; neFN}
For each n, u, is a maximal Rn-net on u., Hence Y ig dense in u and
u=Y=X

Theorem, Let X be a figure, Then the following are equivalent:
(1) X is the figure of a set u. :

(2) X is a 9 -class.

(3) X is revealed,

(4) x=1.

Proof. (1) => (2) since the figure of each set-theoretieally
definable class is a 7 -class.
(2) =>» (3) is trivial since each M -class is revealed.
(3) => (4). Let X be revealed and assume x ¢ X, Then X and Mon(x)
are disjoint classes and Mon(x) is a o -class, Let
Mon(x) = N{Z ; neFN} where the {Z,; nePN} is a descending
sequence of set-theoretieally definable classes. If we had Z n X .9
for each n, then N {Z ; neFN Y A X would be also non-empty. Thua
there is an n such that Z n X = §. Thus {x} , X are separated and
x ¢ X,
(4) => (1), Let X = X, Let Y be an at most countable dense subclass
of X. By the preceding theorem, there is a set u such that Y is denss
in u and thus ¥ = G and @ = X, Since Fig(u) is a 9 -class, we have
Pig(u) = Fig(u) (by the implication (2) => (4), which has been
already proved). Thus U = Fig(u) = Fig(u) and hence X = Fig(u).

A figure X is closed if it has one (and consequently all) of
the properties (1) - (4) of the preceding theorem,

In particular, @, V are closed; if X, Y are closed then X, Y
are geparated iff X, Y are disjoint, By the preceding theorem, ‘the
class of all closed figures is codable.

Theorem.' Let SO(X) be a property of classes of .the extended
universe such that ¢ (X) implies X = X. Then the class ) {x; (p(x)}
"is a eclosed figure.
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Proof. Put Y = {X; ()a(X)} . By the preceding theorem, Y is the
intersection of a system of figures and hence Y is a figure., For each
X satisfying  we have YSX and Y<X; thus Y €N {X; ,o(x)} -,
thus ¥ = Y,

Theorem, There is an at most cdun_ta.ble class Z such %hat for
each ¢losed figure X we have X = (1 {Fig(u); uez & X<Fig(nl} .

Proof. Let Y be a dense mubclass of V which is at most eountable.
Por each y€Y, let u(y,n) be a set such that Pig(u(y,n)) = Pig(V-o(y,n)).
(There is such a set)., Put Z ={u(y,n); yeY & neFN} . Let X be a
closed figure. It remains to prove that for x € X there are ye Y and
n € FN such that X € Fig(u(y,n)) and x ¢ Fig(u(y,n)). There is an n
such that o(x,n)n X = §, There is a y€ Y such that {x,yy€ER
Thus xe€ o(y,n+2), novw, o(y,n+1) ¢ o(x,n) and consequently,
XCFig(u(y,nH)) . We prove x ¢ Pig(u(y,n+1)) . Assume the contrary.
Then there is a z ¢ o(y,n+1) such that x & z. But {y,x)€R ,, and
<x,z) € Rn+2' hence <y,z>e Rn+1' a contradietion, This completes
the pgoof.

n+2*

. Theorem, For each class Z there is a subclass Z° of Z such thé.t
Z° is at most countable and N {Pig(u); uez} = N{Fig(u); uezl,

Proof. Let Z1 be the class guaranteed by the preceding theorem.
Put Z, ={ue 43 (€L eZ)(Fig(v) SFig(u))} . For each uei,, u’ denotes
a fixed element of Z such that Fig{u’)c Fig(u) Put 2° = {u i uelyb.
It remains to prove that x eN {Fig(u), ue’ } implies _
x e N{PFig(u); ueZ }. Let x be such that x ¢ N {Fig(u); ueZ}. Then
there is a2 u€ 2 such that x ¢ Fig(u). Thus there is a veZ, such that
x ¢ Fig(v) and Pig(u) ¢ Fig(v). Since v€Z,, we have Pig(v’) < Fig(v);
consequently, x ¢ Fig(v’) and x ¢ ny{ Fig(u), wez’} . This completes
the proof,. '

A class Z is centered iff @ # Z and, for each finite non-empty
subset W of 7z, N {Fig(u); uew } £0,

Theorem. If Z is centered then 0 {Flg(u), ues b £ 9.

Proof. Let Z2° be a subclaas of 7 which is at most countable
such that ﬂ{hg(u), ueZp = N{Fig(u); uesd } Since Fig{u) is
a T-class for each u and since { Fig(u); ueZ’} is a class which
is at most countable such that the intersection of finitely many
arbltrary elements of this elass is non-empty, the intersection
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N{Fig(u); ueZ’} must be also non-empty.

The power-equivalence & 1is defined as follows:

u “ v Fig(u) = Pig(v).

Theorem, ‘p is a 9 -~equivalence.

 Proof. Put {u,v)eR] iff (VYxeu)(Iyev) ((xyyer )&
& (Vye r)(axeu) CERD; € R,). For each n, Rp is aet-thooretically
definable and Rn+1C Rp . One eaaily verifies that Fig(u) = Pig(v)

iff {u,v) eRP for each n. Thus $, equals to the class N{RP; ne PN},

Theorem, &p is compact.

Proof, By a theorem in section 1, it suffices to find for each

e ¢ FN a set w such that v—‘  and ‘such that for each u there is

a vew such that Pig(u) = Pig(v). Let ¢ FN, Take a A ¢ FN sueh
that Zr <Yy o Let w, be a set having at most Yo elements and such
that (Vx)(3yev Jx &y), Put wa= P(v ). Then w hag at most s
elements, Let u be a set and let {rd‘ $ « <%} bvea prolongation
of {Rn, nePN} on uuw . Let f be & function which is a set and
assigns to each x€u an element f(x)e v, in such a way that whenever
{x,yyer, forayew and o £ ¥, then {x,f(x)y er ,. Clearly,
such an f exists and for each x€u we have f(x) & x, Consequently,
putting v = f"u we have vEw , i.e, vew, and Pig(v) = Fig(u).
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Section 3
Conneetedness

We base our study of connectedness on the notien of a conneeted
set, The following definition is self-explanatoery:

A set u is connected (notation: Cntd(u)) iff for each non~empty
ﬁ\roper subset v of u there are xcv and yeu - v such that x & y,

It is useful to introduce the following notion parametrizing
~the notion of connectedness:

_ Cntd(u,n) iff for each non-empty proper subset v of u there are
x€v and y €u - v such that <{x,y 7 €R,.

. x
Theorem, u is connected iff (¥n)Cntd(u,n).

Proof, The implication => is obvious, Assume Cntd(u,n) for each
n and let v be a proper non-empty subset of u. For each n, let X
Yn be such that X EVy Ypo€EU-V and <xn,yn) € Rn. By the axiom of
prolongation, there are x, y such that xev, y€u ~ v and
(Vn)({xwy)e Rn). thus x & y,

Theorem. If u is a set and if there are two disjoint closed
figures X, Y such that ue€X uY and both Xnu and YA u are non-empty
then u is not connected.

Proof, Xnu and YAau are @ -classes; since Ynu = u - ('x Au),
Ynu is also a ¢ ~class, Thus Ynu is set-theoretiecally definable.
Since Ynu is also a semiset, Ynu is a set, Similarly, Xnu is a
set, Since Fig(Xnu) ¢ X and Fig(Yau)cY, we have
Fig(Xnu)nFig(¥nu) = #. Consequently, u is not connected.

A figure X is connected iff for each x,y € X there is a eonnected
set u& X such that x,yen.

As we shall see below, our definition of connected figures
agrees with the classical definition of connectedness for closed

93



figures. Other connected figures correspond to the so-called semi-
-continua of classical topology.

Theorem, Assume X = Fig(u). :Then X is connected iff u is
connected..

Proof. If Cntd(u) and x,y €X then obviously Cmtd(u v {x,y}),
thus X is conneected. Conversely, assume that u is not connected and
let v be a proper non-empty subset of u such that Fig(v)n Fig(u-v)- §
Take x.¢ Fig(v) and y ¢ Pig(u-v). Let we¢X and x,y €w., Then
w EPig(v) v Fig(u-v), wWAFig(v) # § and wnFig(u-v) ¢ P, Hence, by
the pi‘eceding theoi‘em, w is not connected, Consequently, X is not
connected. '

Theorem. If Pig(v)< Fig(u) then there is a wcu such that
Pig(v) = Fig(w).

Proof. Let {r_ ; « < ¥} be a prolongation of {R ; neFN }
en uvv, lLet f be defined on v such that for each x¢v we have
f(x)€eu and whenever <x,y>er for some ycu and o&, = ¥ then-:
{x,f(x)> € r, . (The existence is evident.) Since Fig(v)CFig(u),
we have x & f(x) for each x¢v, Putting w = f%v we have w<u and

Fig(w) = Fig(v).

Theorem. If {x ne FN} is a decreasing sequence of closed
connected figures then [] {Xn, nePN} is a closed connected figure.-

Proof. It suffices to prove that M {X ; neFN} is conneeted.
Let x,y € N {Xn; neFN} , By the preceding theorem, there is a
decreasing sequence {un; neFN } of connected sets such that
Fig(un) o xn and X, yeu, for each n. In particular, we have Cntd(un,x
for each n. By the axiom of prolongation, there is a set u such that
x,y€u and for each n we have ug u, and Cntd(u_,n), ‘i,e. u i8 connecte
Since ucX for each n, we have u g_n{xn; neFN}.

Theorem. For each figure X, the following are equivalent:
(1) X is set-theoretically definable;
(2) X and V - X are closed figures.

Proof. If X is set-theoretically definable then so is V-X, thus
both X and V-X are S -classes (and we know that a figure is closed
1ff 1% is a 9r -class). Conversely, if both X and V-X are 9r-classes
then X is both a W -class and a ¢ -class and hence X is set-theore-
tically definable. ' '
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A figure X is called clopen if it has one of the properties (1),
(2) from the preceding theorem (then X has both (1) and (2)).

Theorem. The class of all clopen figures is codable and at most
countable,

Proof. Codability follows from the codability of all set-theore~

tically definable classes, In Section 2 we proved that there is a

Z < FN such that for each closed figure X there is a Z°c Z such that

X = N{Pig(u); ueZ’} . If X is set-theoretically definable then Z°

- can be taken to be finite., Thus if we associate with each clopen
figure X a finite set w<Z such that X = M{Fig(u); uew}, then we
have constructed a one-one mapping of all clopen figures into the
countable class P(Z) of all (finite) subsets of Z.

The equivalence of connectedness "C is defined as follows:
x &, y iff there is a connected set u such that x,ye€u.

Obviocusly, x £ y implies x "C Y, i.e, ‘C is coarser than & ,
Consequently, "C is compact.

Put Rc =X,y 3 (Fu)(cntd(u,n) & x,yeu)}.

For each n, R is a set-theoretically definable equivalence and
n+i € Rg . Furthermore, ¢ 18 & subrelation of R thus for each x,
the class {y, {xyy Y e RC } is a figure., Since it is set-theoretically

definable, it is a clopen figure.
Y C
Theorem. &, coincides with ﬂ {Rn; neFN} .,

Proof. If {x,y) e Rc for each n then there is a sequence
{u o} ne& FN } such that, x,yeu and Cntd(u ,n) for each n. By the
axiom of prolongation, there is-a u such that x,y€u and Cntd(u n)
for each n. Thus x &c y. The converse inclusion is trivial,

Corollary. &c ig an indiscernibility equivalence.
The monad of a point x w.r.t. =‘=C is called_ the component of x.

Theorem. x *C y 1ff there is no clopen figure X containing x
but not y.

Proof. If there is a clopen figure X with x eX and y £ X then,
by a theorem above, there is no connected set u such that x,yeu.
Cn the other hand, if there is no such figure then <x,y)e Rg for
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each n and hence x &c Y by the preceding theoreﬁ.

Treorem. The following are equifalent:

(1) The equivalences % and &, eoincide.

(2) %+ has a gensrating sequence { Sn; neFN} such that Sn is an
equivalence for each n.

Proof. Assume (1). Then {Rg; neFN}. is a generating sequence
of & having the desired property.

Conversely, assume (2) and let x, y be such that not x & y.
Then there is an n such that (x,y) ¢ S,+ The class {z; {x,2% ¢ Sn}
is a set-theoretically definable figure containing x but not y. By
the preceding theorem, we have not x &C y. Thus # and ic eoincide.

The equivalence * is said to be totally disconnected if it
satisfies one of the conditions (1), (2) (and hence both of them).

Theorem, &C is totally disconneected,

Proof. { Rg,IIEFN } is a generating sequence of ic and each
Rg is an equivalence.

Theorem. The following are equivalent:
(1) & is set-theoretically definable.
(2) Mon(x) is a clopen figure for each x.
(3) The class V/& is finite.

Proof. (1) => (2) is trivial. We prove (2) => (3). Assume (2).
Since {Mon(x); x€V} is a class of clopen figures, it is at most
ecountable, Since its union is V it is finite.

we prove (3) => (1). Assume (3). Por each x, V - Mon(x) is a
closed figure (as a union of finitely many closed figures). Since
Mon(x) is also closed, Mon{x] is clopen. Thus V is decomposed into
finitely many set-theoretically definable classes; it follows that
the corresponding equivalence is set-theoretically definable.

The equivalence & is called discrete if it has one of the
properties of the preceding theorem (and hence all.of them).

Evidently, if & is discrete then & is totally disconnected.
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Chapter IV

Motion

.Motion is one phenomenon of the continuum that has been tra-
ditionally studied by mathematical medans.

In the alternative set theory, we shall deal with motion on
the basis of the hypothesis concerning phenomena of the continuum
formulated in the introduction to Chapter III. This hypothesis is
'specified for the case of motion as follows: -

Motion 18 a phenomenon which we perceive when we are presented
with a sequence of states in which each state differs indistinguishably
‘from the preceding state in time and substance.

Thug, for example, if we watech & movie we are presented with a
rapid'series of photographs. We are unable to perceive the differences
between successive photographs since these differences lie beyond
the horizon of our ability to distinguish The series of photographs
is then perceived as motion. :

changes realized . in the passage from one state to the next state
are called infinitesimal, Since we work in the extended universe we
shall try to model states as sets or classes,

The description of the phenomenon of motion on the basis of in-
finitesimal changes raises the question of the relationship between
infinitesimal and global prbperties‘of the motion, Thus, for example,
the growth of a plant from a seed is a motion. The problem is to
determine the resulting shape of the plant from the sequence of in-
finitesimal changes of shape, or, conversely, to derive this séquence
from the global growth, ' '

This example shows that we understand motion here in a rather
general manner and do not restriet ourselves to mechanical motions,
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Section 1
Hotions of-p.oint:e

T‘hroughout this chapter, 4 denotes an indiecernibility equiva-
lence ‘and. {Rn, neI’N} denotes a generating eequence of 2,

The motion of a point is the eimpleet kind of motion. A point
moves by changing pernanently, in. imperceptible jumpe, ite loeation.
With each jump it must not dieappear and euddenly reappear in a
distant place; thus’ after each jump it muet find iteelf in a plaee _
indiscernible from the previoue place. Thie leade to “the following
definition. - ; - _~ S e

A function d is.a motion of a point in a time oh, ‘where J'e N,
if (1) dom(d) = 19'+ 1 and (2) for each’ oc,<1}" d(«) & de +1). '

Thus, the time of the motion d is the nnmber of: etatee vieited
by the point whenm moving from da(0) to d(u#),

If d is a motion ‘of a point then rng(d) is called the trace of i
 Pheorem. The trace of a- motion of a .poi'nt is a connected set,

Proof. let v be a proper no'n-empty subset of rng(d). Asgsume
d(0)e v. Let J be the maximal o« such that for each £ we have
d(p)ev. We have ¢ < P, d(y')e v, d(f+1)erng(d) -v’ and
d(ar) & d(y +1). Similarly for d(0) e rng(d) - v.

Theorem, For each non-empty connected set u there is a motion
d of a point such that u is the trace of d.

‘ Proof. Let {rd‘ : o(."(} be a prolongation of {R ; neFN}
on u, We claim that for each n there is a function f and a z/a' €N

' such that dom (f) = 1?’n + 1, rng(f) = u and for each «< ‘l}' we have
e (), £(t+ 1)> € r . By the axiom of prolongation, there is a
infinite p<t and a “function £ such that dom (£) = %, e N,
rng(f) = u, and <f (), £t +1)) ¢ ry for each << 'I/'r, thus
() = f(,,(, + 1) for each o¢ < 1/;,. Thus f is the desired motion.
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Indeed, take an n, Put Y ={f; dom(f)en & rng(f)cu &
& (Yoo )(ee + 1£dom(f) = {f(x), £+ 1)) er )} The class is
set-theoretically definable. Thus there is a g <Y such that feY
lmplies rng (f)-<rng(g) (rng (8) has the largest possible number of
slements). We show rng(g) ®u, which implies rng(g) = u since
ng(g) € u. Assume that rng(g) is a proper subset of u. Since
ng(g) # §, there is a ,8 Q- dom(g) and yeu - ‘rng(g) such that
;(p‘) % y. In particular, (g (/5) y)€ ry. Put dom(g) = 1"+ 1. We
lefine a function f on 2}'+ (1" /3) + 2 a.s follows: -
R / g(°") for ,4.41}!

f(ea)- T g2 ) for J'Aoé“zf‘ Ay

T~ yfore(.-‘l"‘t(tﬂ‘ A) st

ividently, fe:Y and rng (f) = rng(g) v {y} » which 1s a contradiction.

In the rcat of thts section, d denotes & motion of a point in
L time- ##, P e K. For w, f<th put o & B 1iff for each
satiafying Min {oc IB} AfAMax{ob ﬂ } we have d(o&) & d (f)

Obviously, - ,@ 1mplies d(w) & d(ﬂ)
the: indiscernibility equivalence {(oc /3); d(oo

is finer than

(ﬂ)}

8 % !
24

. Thcorcm. &“ is a JL -equivalence.

Proof. For' each ol /5 f}‘ put
et /_’;} €8, -(Vr between Min{«<, B}, Max{oé,ﬂ}) (<d(¢4),d(y)) € R )
(r is between obyy oy if Ly <o42) Evidently, each § is
set-thcoretically defina.ble and ‘it 13 easy to verify that o : ﬁ
Ler (o(. ﬂ)es for each n. : :

: The motion d 1s called compact 1f is a compact equivalence

a. fortiori d is an indiscernibility equivalence)

Theorem. 'l‘he motion d is compact iff for each X and cach infi-
1ite set u g {o(. d(eé)- x} there are. o(. ﬂeu such that o 4 /3

Lnd 04: ﬁ

Proof. The 1mplication => is obvioua. Conversely, agsume that
l is ‘not’ compact Let v € 19‘+ 1 be an 1nfinite set such that, for
rach. ol ﬁe Yy otk f implies - o4 =B Since & -is compact, there is
r point x and . an 1nfinite ugw such that d"uCMon{x] ‘Thus /-
1 ¢ {el d(oa) 2 x} and the condition of our theorem is satisfied.
Thc cardinality of the class {u‘., d(ac.) 3 x}/ » 1.e. the '
mmber of equ*va]ence classes of Z on {m, q (0(,) & x } , is called
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the order of the point x, Thus the order of x tells how many times
the motion d -enters the monad of x.

The last theorem has the following
Corollary. If the order of each point is at mest countable then

d is compact.

7

The motion d oscillates between points x, y (between sets u, v)
if Mon(x)nMon(y) = ¢ (Fig(u)n Fig(v) = @) and there are sequences
{3 nePN, {f 3 neFN}) such that o <f <o < f . for
each n and d(« ) & x, d(f,) &y (d(x )€ v, d(fy)e v).

The following theorem is an immediate consequence of the axiom
of prolongation,

Theorem. d oscillates between points x, y (between sets v, v)
1££ Mon(x)n Mon(y) = ¢ (Fig(u)n Fig(v) = #) and there are sequence
a =3y 'S gy, b =4 p ;f.‘.-é'} (i.e. a, b are sets) such that

d' ¢ FN and for each p< J(we have oip<f3 < olpyq </3‘,*1 and
d (o&r)ﬁ X, d(/SI) ty (d(o:,f)e, u, d(/&‘.)e vs

Theorem. The following are equivalent:
(1) The motion d is not compact.
(2) There are points'x, y such that d oscillates between x, y.
(3) There are sets u, v such that d oseillates between u, v.

Proof. (1) =r (2). By a theorem above, there is a point x and
an infinite set {-oéf'; y %9} such that for each y < d ve have
Ly < °‘Jr+1' d(o&x)?- x but not otyd ot .. Por each y, let J be the
least natural number such that there is a # such that o(.,‘ﬁ <ol s
and <d (olo‘.-), d(p)) ¢ R . Obviously, F €PN, Let /3,. be the least

such that a6(.<{5<o6 41 end (d(oé.r)_, d(B)) ¢ Ry . The sequence
{/5 H f.f 6‘} is a .set and there is a point y a.n!a.n infinite set
v e d such that y € v implies d(ﬂ )& y for each J+ Since not
d(e(,l)i d(pf)' we have not x & y. %hus the sequences {oér; re v},
{ﬂrg J € v} witness the oscillation of d between the points x, y.

(2) =» (3). Let d oscillate between the points x, y and let
the sequences {oér; = J‘} ’ {/3(; = d‘} witness this oseillatior
There are sets u, v such that u&Mon(x), vEMon(y) and for each
s =d, d(o(;f)é u, d(ﬂr)e v. Then d oscillates between the sets

u, v.
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(3) => (1). By the preceding theorem, there are u, v such that
Fig(u)n Fig(v) = ¢ and sequences {o&r; rsd‘} , {ﬂf' = e
(setst) such that & ¢ PN and for each J <& we have -.

°"f<pr<°"f+1 <1< #, d(pen, d(f)e v, Thus y<d impiies
not o(.rj ol +1 and consequently, for each (, ﬂed", ec,: o(.ﬁ
implies r= « Thus d is not compact.

When we follow a motion'd of & point then we have an
indiscernibility equivalence # on its duration J"+1, satisfying
the following natural condition:

(t<y<fpaocaf)=> ot &y, forall s fB fe

The kind of our evidence of d depends on the relationship
t and & , '
be weep‘i, -

°P6r example, if % is finer than = then our evidence of d makes
it possible to determine for each monad of time the corresponding
monad of the position of the moving point, i.e. a monad in & ,
Sinee\% is compact, this is possible only if d is compact.

On.the other hand, if a monad of % intersects mére than one
monad of s then in such a monad of time we cannot determine a
single monad of position as the corresponding position of the moving
point.

Further properties of motions of points depending on metric
properties . of # and % will not be studied here since we have not yet
introduced the necessary notions.
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. Section 2

. Pointwise motions o.f‘ gets o

He "ar'e now going to formulate a definition of a motion of a set'
déTingt ncept of _motion but will :
: "'concern only the simpl case that the movingv'set is not 'endowed with .
= '-fany structure. : o ' : '

LA A fnnction d is a motion of 8 set in the time ‘l", vhere t}' is
;_..a natural number, ife dom(d) - l"-b- 1 and for each ob‘ 1/"
'.f;_-;Fis(d(ob)) - ris(d(ou ) - SRR

o Olearly, d is -a motion of a set in the time 1}‘ iff d is a motion _
""or a -»point in 'the t_ime. 1" vith respect to the pover-equivalence &

’,.

The aim of the present section is to formulate infinitesimal
onditions equivalent to. the decomposability of a motion of a set
into motions of” single points._ If some points move simultaneously
‘then it is impossibie that two distinct points have the ‘game. position..
"".__'This motivates the i’ollowing definition" : : '

N ."A class T is a sheaf of motions of points in the time ‘h" iff e
"have the folloving: v - o T
?."(1) Each element of T is a’ ‘motion of a point in the time ‘lﬂ‘

(2) Ii’ f, g are distJ.nct elements oi' T and if oas 1" then i’(-a);‘ g(ob) )

He pu‘t T - {f(.c), rem} for each o £ 1}‘ and o '
: T /3_.- {(f(ec), f(/!)) fe T} “for each d- ﬁ 1}'
""Evidently, ﬂ is a one-one mapping of T, onto Tot . Moreover, o
9 ..

T“ .“1 associates with each point an indiscernible point.
’”

S Classes X Y are infinitesimally shifted (notation. Shftd (X Y))
SRIRTROR __iff for each z, l"on(z]n Xx Mon(z)n Y (1_ €. there_.is a one-one mapping
of Hon(z)nx to Mon(z)nY) : T T

Evidently, if X Y are infinitesimally shifted then '
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Fig(X) = Fig(¥Y). In particular, if T is a sheaf of motions in the
time ¢ and 1f ot< ¥, then T,» T 4 are infinitesimally shifted.

A motion d of a set in the time 1% is a pointwige motion of a
set 1f, for each « < P, d(«) and d(et + 1) are infinitesimally
Shiftﬁde

It follows from the above considerations that if a motion d of
a set is decompoeable into motions of its points then d is a point-
wige motion of a set, We shall prove that the converse implication -
" 18 also true, Moreover, we shall be able to decompose a pointwise
motion of a set into motions of points in such a way that our
decomposition will have useful additional properties.

A sheaf T of motions of points in the time tP is a trong _
decomposition of a pointwise motion d of a set iff we have the
following: '

(1) For each w=, T = d(x). |
(2) For each o, f=? and each ucls , 1% g u 16 & set.
(3) For each ugT , the function {(T:"’o U,y ot ) ;wsz}‘}associating.

with each o/ the set T:"ou is itself a set,

Condition (1) says that T decomposes d into motions of points.,

Conditions (2) (3) say that T induces a motion of aubsets of the set
moving in the motion d.

Ve shall now formulate the main theorem of this. section. -

Theorem. Let d be a pointwise motion of a set: in the time z*
Then there is a sheaf T of motions of points in the time aﬁ.whieh is
a strong decomposition of- d. e C

Ve first formulate two simple eorollaries. :

. Corollarx. The following are equivalent.-
(1) u and v are inf:lniteaimally shifted. : ol
(2) There is a one-one mapping F of u onto v such that x & F(x) for '

_ .-each XE& U, R o S R S R
(3} 'There is a’ one-one mapping F of u onto . such that x & F(x) for, __
‘each xeu and Set(x) Set (Fnx) for each XCu. o

"Corollarx. Let u, v be- infinite sets. Then there is a one one '
mapping Fof u. onto v such that “for each X<u, X is'a get iff F“X
is a set, : -
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We shall now prove our main theorem. The proof has been
considerably simplified by K. lude and J, Ml¥ek., All theorems and
notions in the rest of thie section are auxiliary to this proof.

In the eequal, ¢ denotes a set which will be specified in the
proofs of our auxiliary theorems and '{-r."; o6 ﬁ‘t} denotes a prolonga-
tion of { R n’ neFN} on c. In contradistinction to the preceding
chapter, o(x,-t.) now denotes the set {yec, {x, 57 ¢ r_‘} . For
u€c and xec we put y = S(x u) iffly is the first element of ¢
(in a fixed linear ordering =< of ¢ such that = is a set) such that
o(x,)au £ P => yeo(x,¢)nu ' '
for each o < %.

Evidently, S is a set. For u # f} we have S(x,u) €u, for xeu we
have S(x,u) = x.and for xeFig(u) we have S(x,n) & x,

Theorem. Let u, u’ be infinitesimally shifted and let v, w be
disjoint sets whose union is u., Then there are disjoint sets v°, w’
whose union‘is u’ such that v, v’ are infinitesimally shifted and w,
w’ are also infinitesimally shifted.

Proof. Let uvu’c ¢, First assume usu’., Put
¥ ={x; xeu'-u g Min{e; o(x,%)n v} > Min { o o(x,)nwutt;
furthermore, put v'= vyuv, w'= u’=- v’, We prove that v, v’ are in-
finitesimally shifted, Since vev’, it suffices to prove that if
Mon(x)nv is finite then Mon(x)n v = Mon(x)nv’, thus Mon(x)n¥ = @,
Assume the contrary; then we may assume x€ V. Consequently, there is
an m such that o(x,m)a v = Mon(x)n v. This implies that
Minde; o(x,e)n er(.} € FN, But then also
Min{e; o(x,.c)nvﬁ.a} € PN, since xe¥. It follows that Mon(x)nw
is finite and hence Mon(x)nu is also finite. Since u, u’ are infi-
nitesimally shifted and u €u’ we have Mon(x)nu = Mon(x)nu’, Thus
x €u, which is a contradiction. One shows similarly Shftd(w, w’).

We now prove the theorem in full generality. For o;.é't we define

sets Ve r Y and functions f_, , g, by induction as follows: v,
andwd is a maximal r_ -net onv-U{vp ﬁtw}
w - { s fex) respectively. We put

f(x)..s(xu- (U{rng(f i festhu U{rng(gﬁ) /Je-c}); for each
XEV, .

g, (x) = S(x,u’- (U{rng(i‘p) f=apuU {rng(gﬁ) Beop)) for each
xew',‘ .
Let d be the maximal < =% such that U {fpu-gp; fseb i a
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one-one mapping, <x, fp(x))e zs for each <o and each xevg ,
and <x, g4(x)y € ry for each €. and each xewg . Since u, u”
are infinitesim}ly shifted x€v implies x & fn(x) and xew,  implies
x 2 gn(x) for each n, Thus d ¢ FN, Put f = U{f,s *=d} and

g = U{gy s = I} . Then Shftd(dom(s), rng(£)), Shftd(dom(g), rng(g))
and rng(g)nrng(f) = §. By the first part of the proof, there are v°,
w’ such that v'aw’ = g, v'u w’ = u’, Shftd(rng(£), v°),

Shftd (rng(g), w'). Thus it suffices to prove Shftd(v, dom(f)) and
Shftd (w, dom(g)) . We prove the first equality; the second is proved
analogously. Note that dom(f)£v; thus it suffices to prove that if
Mon(x ) ndom(f) is finite then Mon(x)n v &Mon(x)n dom(f). Assume the
contrary. Let Mon(x)n dom(f) be finite and let xe€v ~ dom(f). (This
can be assumed without loss of generality.) Pick a n, such that
Mon(x)n dom(f) = o(x,n;)n dom(f). Furthermore, pick a n, such that
o(x,n,) n dom(f) € U{vys n=ny }. Put m = Max {ny, n,p + 1. But

then there is a y € A such that <x,y> erm, hence yé& o(x,n1) and
yedom(f) - U{v ; n=n,}, which is a contradietion.

An inspection of this proof shows that we have described a set-
-theoretically definable function associating with each quadruple
<{u, vy \w, u'), satisfying the conditions u = vuw, vaw = @,
wuu’e c, a decomposition <v’, w’) of u’ into two disjoint sets.
Using axioms concerning the extended universe we have shown that
Shftd(u, u’) implies Shftd(v, v') and Shftd(w, w’). Iterating this
construection and specifying appropriately c¢ we get easily the
following theorem:

Theorem, Let d be a pointwise motion of a set in the time 1}‘.
Let f_é'fp‘ and v_C.d()r) . Then there are pointwise motions dyy d, of
sets in the time % such that d, ({) = v and, for each «< ¥, the
pair {d (=)}, d,(x)) is a decomposition of d(«) into two disjoint
sets. .

For each « such that o + 2 <7 we put
u® . {x; xeu &o(x,%¢)n u = o(x, x+2)n u & o(x,_ol.)Q b .

Let Shftd (oc, u, v) be the conjunction of the following two
formulas: .

(Vxeu™)(o(x, < + 2)nu & ofx, o« + )N v),

(VYxev@®)(o(xyec + 2)nv R 0(x,¢ + 1)nu).

Evidently, Shftd (<, u, v) can be written as a set-formula.
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Theorem. u, v are '1hfi'nitesimaiiy'shif't'ed 1ff
(Yn)(Shftd(n, u, v)).

Proof. First assume Shftd (u v) and let ne ¥R, Let, for example,
xeu(n thus o(x,n)n u = o{x,n+2)n uZn. For each yeo(x,mz)
l(on(y)nn is finite; since-Shftd(u,v) and o(x,n+2)nu = o(x,n+1)n u,
there is a one-one mapping f of o(x,n+2)n u onto o(x,n+1)n v; moreov
we can assume that f associates with each point an infinitely near
point. This proves o(x,n+2)n u&o(x,nn)n V.

Conversely, aséume that u, v are not infinitesimally shifted.
For example let xeu, let Mon(x)au have k elements (where k is a
finite natural number) and let Mon(x)n v have more than k elements,
Then there is a n>k such that Mon(x)nu = o(x.n)n u; thus xeu(n)
But Mon(x)nv‘o(x n+1)a v, thus o(x,n+2)n u-<o(x n+1)a v, and
consequently we have not Shftd (n, u, v).

.In the rest of the preéent section, d denotes a fixed pointwise
motion of a set in the time . Furthermore a denotes the set of all
functiorsf such that dom(f) = # + 1 and f(x) € d(«) for each o=
and A is the class of all fea such that f is a pointwise motion of
a set in the time 1" For X<a we put 4

v(X) ={ri (Vs J‘)(Vﬁ p) (Vrex)(sneed (B, @) £(w +1))}.

Evidently, for each XSa we have XSA iff PN € y (X), Moreover,
if X is a countable subclass of a then X€A iff FN is a proper sub-
class of v (X).

A class B€a is a called a (Boolean) lgebra ond if we have
the following:
(1) if feB and g is the function on 4 + 1 such that
g(w) = d(«) - £(«) for each ot = then geB;
. (2) if £,, £, € Band g is the function on #+ 1 such that -
g(o(a) - f1 () v 1, (=) for each o =< P, then g ¢B.

For each Xca, B{X) is the intersection of all algebras B on d
such that X< B, Evidently, B(X] is an algebra, and if X is finite
(countable) then B(X) is also finite (countable). Furthermore, it is
evident that B is é lcountable- algebra iff there is .an ascending
sequence {Bn; ne PN} of finite algebras whose union is B,

A finite set p is & partition iff pca and
(1) (vf1r fzép)-(v"‘.ﬁ #\>(f1 ¢ f2 = f1("‘)n fz("") = ¢> '

3
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(2) (Y =#)(d) = U{f@); fep}).

If p is a partition then : .
B(p) ={f; (Ix€p)(Ve= P)(2()= U{g(2), g€x})}. Thus it pea
then B(p)€A. Furthermore, B is a finite algebra iff there is a
partition p such that B = B(p).

Theorem. Let BEA be an at most countable algebra, let [ = 1}'
and ved(r). Then there is an at most countable algebra B’ such that
. BeB cA and v = f(y) for some f&B’.

Proof. First assume that B is finite. Let p be a partition such
that B = B(p). Evidently, p<A. By our second auxiliary theorem,
there is a partition p’< A such that
{f({); fep'} = {i‘(f)n vi fer) u {f(y) ~v; fepl.

It suffices to put B° = B(p). :

Now assume that B is countable and let {Bn; ne.FN_} be an
ascending sequence of algebras whose union is B. Let {BI;; neFNp
be the sequence of corresponding algebras constructed according to
the first part of the proof. Choose a ) ¢ FN such that
Sev(B)nv (3;) for each n. By the axiom of prolongation, both
sequences have prolongation { Byei o€ by {BLixe o, b (sets!)
such that, for each ol€ot, Sev(By)n v(By), t.e. B S4, B, € 4;
moreover, B, €SB .., B & B., , and there is exactly one f, & Bl
such that f“()') = v. Choose an o € o4 , o ¢ FN and put ‘

B’= B(Bu {f }) . Evidently, B€B’c B c A, B’is countable and
contains fo(, ; hence B is the desired algebra.

Theorem. There is an algebra B<A such that for each y'é'}‘and
each vsd(‘}r) there is an f& B such that f(r) = V.

Proof. Enumerate all ordered pairs <Y y V>, where x’é 1}' and

: vsd(x'), by ordinal numbers (elements of Q). We construct a sequence
{B i <€ L} of countable algebras such that, for each o€ Q,
Bo(.5 A is the algebra guaranteed by the previous theorem for the
‘algebra B = U {Bﬁ; few nSl} and for the ot-th pair Lr,vwYy.
Finally, put B= U{ B ; «£c (1}. :

Proof of the main theorem, Let B be as in the preceding theorem,
If feBand y= P is such that f(y) is a one-element set, then f(«)
is a one-element set for each o< P since f is a pointwise motion

of a set. For each f which is a motion of a point in the time J‘ ’
put (=) = {f(=)} for each o = # . Now put T ={f; fe B} . Then T
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is a sheaf of motions of points in the time ‘b" » 8ince for f, ge¥,
ffgeand p= /# we cannot have £(y) = g(y)s 1f we had r(f) = g(y)
then we would have T( ) = g()r) and taking heB guch that

h(w) = Tl) = g() for each o We would have h(") P, thus h(w) = §
for each o¢ , Furthermore, one easily sees that T is a strong decom=~
position of d. '
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Chapter V

Similarities

In classical geometry, two pétterns are congruent if they differ
only by their positions but cannot be otherwise distinguished, The
present chapter is devoted to an analogous notion concerning classes
of the extended universe. Thus, a&s in Chapter I, we shall 1niestigate
the extended universe, but we shall make use of notions introduced
in Chapters II and I1I, '

Our Fnbjeéf is not accidental: when developing mathematics in
the alternative set theory we model diverse situations, capable of
mathematicsl treatment, in the extended universe. Similarities are
mappings which enable us to deal with models that are technically
easily graspable because they are well located in the extended uni-
verse. Furthermore, using similarities we can investigate more deeply
the structure of the extended universe.

The languages FL and FLC play an important role throughout the
chapter. Our subject forces us to use such languages since only by
including formulas of various kinds in the universe of objects to be
invéatigated can we achleve satisfactory generality. This is a minimal
fragment of mathematical logic indispensable for general mathematies.

) In Chapter 1I Section 5 we proved that the class of all set-
-theoretically definable classes is codable. The reader familiar with
logid certainly realized that in the proof of that theorem we
constructed -~ mutatis mutandis - the satisfaction relation for set-~
-formulas of FLy with respect to V. Thus in formalizing our theory
we shall replace expressions of the form {x, y(x)} where y(x )

is a set-formula of FLy by {x; x satisfies ¢ in V.

In Section 1 of the present chapter we shall use more general
formulations - e.g. of the form "the class { x, y(x.y1,....yh,Y1, ..
cees Ym)§ where ¢ is a formula of FL, y,, ..., y, are sets, and
Y1,
evidently exists for each actually realizable formula ¢ of L and

ooy Ym are classes from the extended universe®., Such a class
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each ¥,y ceey ¥po Tq9 ooy Ym’ and the class of all formulas of FL
is a subclass of the class of all actually realizable formulas of L.

This way of reasoning is impossible if our theory is formalized
in the predicate calculus with primitive predicates € and = and
with variables for classes from the extended universe, In this ‘case
we have to confine ourselves to obvious modifications of the respec—
tive theorems to theorem schemata. (each theorem is converted into

, infinitely many theorems, one for each actually realizable formula).
Another possibility consists in introdu,cing' a new primitive operation
Sat associating with each formula ¢ of FL, each sequence

={y,; ne PN} of sets, and each sequence ¥ ={Y ; ne FN } of
classes a class Sat (‘/, y, Y), and in formulating obvious axioms
enabling us to replace expressions of the form

{.x; P(Xy Fqs eoes Tys Y1s enes Y )b by sat (¢, ¥, ¥).
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Section 1

Automorphisms

A function F is a similaritx‘ iff ror each set-formula
(f(x1, esey X ) of the language FL and for each Yis ey Yp€ dom(F)
we have (f(y1,-o;o’ yn) = V(F(y{)’ ce ey F(yn))

Classes X, Y are similar (notation: X = Y) iff there is a
'similarity F such that dom(F) = X and rng(F) =Y.

Theorem. (1) Ea.ch similarity is a one-one mapping. (2) 1£ P is
a similarity then F is also a similarity. (3) Composition of si~
milarities is a similarity. (4) If F is a similarity and GSF then G
is a similarity. (5) The empty class is a similarity. (6} If ¥ is
a codable directed class of similarities then UZ is a similarity.

Let 'y be a rormula of FLy and let A be a constant denoting a
elass. Then ‘f is the formula resulting from Y by the restrietion
.of all quantifiers binding set variables to elements of A and all
quantifiers binding class variables to subclasses of A. Thus (V xi
and (3x,;) are replaced by (¥x;eA) and (Ix; € A), respectively and

(in) and (3x,) are replaced by (VI €4) and (JZI_A‘), respec-
tively. :

The followihg theorem shows that two similar classes are in-
distinguishable by formulas of FL., It can be easily proved by induc-
tion on the complexity of formulas.,

. ﬁeore_m. Le't- &/(5:1, ceey Xy .](_1, ecey Xm) ’bg a formula of FL,
Let F be a similarity and put A = dom(®), B = rng(F). Then
A B
‘)o (}'1, ”_~-9yn0 Y1,0~--oxm) (F(Y1),..-,F(yn), Fr Y1,.‘.,F"Ym)
for each Yq» .7.,yne-A, Y1, ...,Y_A.

In particuiai‘, it foillows from the definition of a similarity
and from the pi‘evious theorem that all properties characterizing the
class {1 are 1nvariant.under similarities. Thus if 2 is such that

() then Z can be identified with L) ; such a Z may be chosen to
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have. some useful additional properties. Similar considerations apply
to other cases. .

Theorem, Let F be a si’milaLrity and assume F to be at most
countable. Then for each set u there is a v such that Fu{<v,u}
is a similari_ty. :

Proof. Let & be the class of all classes
{x; ¢ (x, P(yq) s eees F(yn)” where y(xo,x“..., x) is a set
formula of FL and Yqs eees ¥, are elements of dom(F) such :that
«f(u, Y{seees¥y). Evidently, ?l is codable and at most countable. _
Since {xo 71(3) P(y‘l)o-~~’ F(yn))> n {39 YZ(X’ F(y1) ,...,F(yn))}-
= {x;} <{1(x, F(y1), ceos F(yn)) & Polx, F(y1 y eoes F(¥y ))} the clas
# is dually directed by inclusion, From (,0(11, Yyseees ¥y ) we have
(Ix,) p (x5 Tyseees ¥,) and consequently (Ix )¢ (XO,I"(Y1) s I6A)
Thus each element of # is a non-empty set~theoretically defimable
class., It follows that N # #. Take a ve N A . Then F v {{v,ud}
is a similarity. ‘ o

A similarity whose domain and range is V is called an
automorphism.

Theorem. Tet ¥ be an automorphism. Then for each set u we have
F(u) = F"u.

Proof. Evidently, x €u implies F(x) ¢ F(u), thus FrucF(u). If
y e F(u) then y = F(x) for some x and F(x)e F(u) It follows x ¢u,
thus y € F'u. We have proved F(u)e€ Fu,

Corollary. If F is an automorphism then X is a set iff F"X is
a set,

Theorem. Let ¢ (XqyeeesXy, X1,...,Xm) be a formula in FL. Let F
be an automorphism, Then
P(y1|-'~)ynoy1,‘”|Ym) E V(F(Y1),-~~’F(Yn), F"Y1|°°°9F"Ym)
for each Yqreess¥ps Y1’“"Ym'

Theorem, If Fo is a similarity, Fo at most countable, then
there is an automorphism F such that FOEF.

Proof. Let {xoc,
of V. We construct a class {F R o{,&ﬂ_} of similarities inductively
as follows: for each non-zero o« € Q., F, isa gimilarity which is

at most countable such that U{Fﬁ 3 ﬂeﬂnoc.} SF@6 » X € dom(FoL) ,

0 #«efl} bean enumeration of all elements

112



and x_ € rng(¥,) . Existence of such an F, follows from preceding
theorems; to be definite, take for F, the first mapping having all
desired properties in a well-ordering of the class P, (V). PFinally, put

F= U {F 3 o € 0 } , evidently, F is an automorphism and F c F,
-aX=-X=~x=

A set y is defimable iff there is a set-formula ¢ (x) of FL
such that y is the only set satisfying ¢, i.e. ¢(y) & (Ix )¢ (x,).
" The class 0f all definable sets is denoted by Def.

_  Theorem. For each ¥, ¥ 1s definable iff F(y) = y for each
automorphism F.

Proof. Let y be definable by ¢ (x) and let F be an auto-
morphism. Then (/(F(y)) and consequently F(y) = y. On the other hand,
- agsume that y is not definable. Let # ve the class consisting of all
classes {x; l)ﬂ‘x)} y where ¢ is a set-formula in FL and y satisfies
. Then X is codable, non-emty, at most countable, and ye N X .
Assume N = {y} 3 then {y} can be obtained as the intersection of
- finitely many elements of &, since % consists of set-theoretically
definable classes. Consequently, there are set formulas L/hl,..., Yn
“in FL such that . (y) &... & ¢, (y) & (Ix) (P (x) &... &y (%) -
Thus y is definable, which is a contradiction., Thus there is a
2 € NA such that z # y. Since z satisfies the same set-formulas of
FL, {(z,y)} is & similarity. There is an automorphism F such that

F(y) = z, thus F(y) #y.

Theorem. A set y is definable iff there is an arbitrary formula
¢(x,) of FL such that ¢(y) and (I!x) p(x,). '

Proof. By definition, if y is definable then there is a set-
-formula ¢ (x) of FL such that ¢ (y) & (a'x ) ¢ (x,) . On the other
hand, if ¢ (x ) is an arbitrary formula of FL and F is an auto-
morphism, then (/(y_) implies ¢ (F(y)). Thus i# y is the only set
satisfying ¢ then F(y) = y. Hence y is a fixed-point of ell auto-
morphisms and consequently y is dei_‘inable.

Theorem. If yq,...,¥, are definable, sﬂ(xo,x”...,xn). is a
formula of FL, and y_,, = {x; (,a(x,y1,...,yn)} y then y 4 is defi-
nable. ;

Thus it

Proof. Let F be an automorphism. Then F(yn+1) F® yn+1.
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suffices to prove that y . = P Ype1e Since go(x,y1,...,y ) =

¢ (F(x), F(y1) s eoes F(yn)) for each x, we have ¢ (X,¥1seee,¥) =
(/(F(x), Yqse+es¥,) for each x, Let z be an arbitrary element of
Ype1 @nd let x be such that z = F(x). We have (/)(z,y.l,...,yn), which
1mp11es ¢ (XyFq94049¥,), hence X€y,,q and Z€Fy_ .. We have proved
Ypet1 € € Fo Ynett the converse implication is proved analogously.

Corollary. If ¥ seess¥ € Def then {yysesss¥py by Y1009
Y4u Vo P(y)s Uy, etc. are definable sets. .

Evidently, # is definable. One can prove easily by induction
that each finite natural number is also definable.

Theorem. The class D_ef is countable. .

Proof. Since there are cou’nt'ably-m_any set-fo'rmulas in FL, Def is
at most countable. Since FN £Def, Def is not finite.

Theorem. Each subset of Def is an element of Def.

Proof. Since Def is countable, each subset u.of Def is. finite.-
Henceu-{xv...,x ¢ for some x1,...,x € Def, .

Theorem. If tp(x ) is a set~formula in FL and the class
X ={x; ¢ (x)} is non-empty, then X has a definable element.

Proof. In Chapter IT Section 1 we proved that there is a set-
~theoretically definable one-one mapping of V on N, An inspection
of our proof shows that the constructed mapping can dbe ‘described by
a set-formula in FL (i.e. without parameters) Thus we can construct
a set-formula ‘b"(x1,xz) in FL such that the class R = {(x,y) H J‘(x.y)}
ie a linear ordering of V such that for each X the initial segment
determined by x is a set. Let y (x ) be the formula
P(x,) & (Vxy)(p(xy) => 1}' (Io.x1) . Thus y (x,) says that x_ is
the first element satisfying ¢ (in the ordering R) Evidently, there
is exactly one u satisfying ¢ ; this u is a definable element of X.

Theorem. If u is definabdble and non-empty then u . has a definable
element. '

Proof. let y/(x ) be a set formula in FL defining u and let
¢ (x,) be the formula (Ix,) (yl(x1) & X €X); thenu = {x, (x)}.
By the preceding theorem, u has a definable element,

- X=~-X-x-
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Define x 2 y iff for each set-formula p(x,) in FL we have
¢(x) = (,V(y) Evidently, £ is an equivalence.

Theorem. 2 is an indiscernibility equivalence,

Proof. For each set-formula (f(x ) in FL put
RW = {xyY 5 p(x) = @ (y)}. Evidently, R, is a . set- theoretically
definable equivalence having only two factors, {x, (/(x)} and
{x; =¢(x)$ . Thus R, is an indiscernibility. Now, € is the inter-
gsection of all equivalenc_es R‘, » hence the intersection of countably
many indiscernibility equivalences and consequently, 2 is an indis-
cernibility equivalence. - :

Theorem. 2 is totally disconnected.

Proof, By forming succesive finite intersection of the equiva-
lences R, we can easily obtain a generating sequence for 2 congigting
.of equivalences, '

The foilo_wing theorem follows immediately from the above. results.

' Theorem., (1) If F is a similarity and x edom(F), then x £ F(x).
(2) x & y {ff there is an automorphism F such that y = F(x).
(3) x & y 1ff for each formula ¢ (x,) of FL we have p(x) = ¢(y).

In the sequal all notions introduced in Chapter III are used
with respect to the equivalence g.

Theorem. Fér each formula ¢(x ) of FL, the class {x; ¢(x)}
is a figure.

Proof. Put X = {x; ¢(x)}. Let yeX and z £ y. Let F be an
automorphism such that z = F(y). Now, go(y) implies ¢ (F(y)), hence
¢(z). Thus z eX.

Theorem. Let { (X ) be a formula of FL such that (Hxxo)ga(xo).
Then the unique Y satisfying ¢ is a figure.

Proof. Let y (x,) be the formula (3%, )((f(x ) & x,eX). Then
Y= {x; y(x)pand Y is a figure by the preceding theorem.

- Theorem. For each Y, Y is a clopen figure iff there is a set-
-formula of FL such that Y = {x; ¢(x)} .

Proof. The implication <= is immediate (Y is a net-theoretically'
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definable figure). Conversely, assume that Y is a figure and Y is
set-theoretically definable. Let # be the class consisting of all
classes {x; ¢ (x)} where ¢(x,) 18 a set-formula of FL and
Y €{x; p(x)}. Then & is codable, at most countable, dually
directed by inclusion, and YN . We claim Y = N &A. Let y ¢ Y. Let
4 ve the class consisting of all classes {x; ¢y (x)} where (,o(x )
is a set-formula of FL satisfied by y. M is codable, at most coun-
table, and dually directed by inclusion. If we had XnY # @ for each
X e#l then we would have N# Y £ P, thus Mon(y)n Y # Pand yeY
"since Y is a figure. Hence there is a set-formula (/(xo) of FL
satisfied by y and such that {x; ¢ (x)p n Y = §. This implies
{x; g (x)he # and y N . We have proved our claim. Since Y is
set-theoretically defimable, & is at most countable and duvally
directed, and 2 contains only set~theoretically definable classes,
we have Ye & . Thus there is a set-formula ¢ (x ) of FL (i.e. without
constants!) such that Y = {x, ¢ (x)} .

Theorem. The class Def is dense in ¥,

Proof. The class Def (closure of Def) is closed, hence a o -clas
If y ¢ DeT then Mon(y)n Def =P, Let & be the class consisting of
all classes {x; (p(x)} where ¢(x) is a set-formula of FL satisfied
by y. £ is codable, at most countable, dually directed, and
Mon(y) = N &. If we had XnDeT ¢ P for each Ie / then we would have
N# o DeT # P, hence Mon(y)n DeT # P. Hence there exists a set-formul:
¢(x,) of FL satisfied by y and such that Defn {x; y (x)} = . But
by ‘theorem above, {x, ¢ (x)} must have a definable element - a contr:
diction,

Theorem, (1) If y € Def then Mon(y) = {y} (2) If Mon(y) is a
set- theoretlcally definable class then ye¢ Def,

Proof. (1) is trivial. (2) Assume that Mon(y) is clopen. Then
there is a set-formula y(x) of FL such that Mon(y) = x5 @(x)}.
But {x; ¢ (x)} has a definable element, i.e. there is a z e Def such
that y 2 z. But (1), Mon(z) =4z}, hence y = z and y € Def.

Corollary. For each y ¢ Def, Mon(y) is an uncountable 9 -class,

Theorem. Let ¢ (Xo) be a formula of FL such that (,:J'!Xo) ¢ ( Xo).
If the unique Y satisfying ¢ is countable then Y & Def.

Proof. Assumé yeY - Def. Then Mon(y)=<Y, since Y is a figure,

But Mon(y) is uncountable, a contradicticn.
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We can easily construct a formula <p(x°) of FL such that
(H!Xo)y(xo) and such that the unique class satisfying ¢ 1is Def.
Thus Def is the largest countable class definable in this way.

Theorem. Let X, Y be c¢lopen figure‘s. Then X nDef = Yn Def iff
X = Y. ‘l’(‘

. Proof. Let t,ﬂ_(xo), y (x,) be set-formulas of FL defining X and
Y respectively. If, for example, y satisfies ¥ but not ¢ , then
{x; ¢(x) & —y(x)} is non-empty and therefore has a definable
element.

The assertion that Def has an uncountable element is independent
of the axioms we have assumed.
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Section 2

Endomorphisms

Throughout this section, '% denotes an ultrafilter on the ring
{X; Sd(X)} of all set-theoretically definable classes.

' . A
F,# and d are coherent if :
{x5 @(xs¥q0eear¥y)} € M= ¢d, Blyy)y «ovy Fly,))
for each set-formula ¢ of FL and each YqyseeesY € dom(F),

Theorem. (1) If P, @, d are coherent then F is a similarity.
(2) If F, M , d are coherent and GESP, then 6, # , d are coherent.
(3) Let # be a codable non-empty class directed by inclusion and such
that each element of # is a similarity and Fe # implies that F,
%, a are coherent, Then U, #, d are coherent.

Theorem. 'If F is a similarity which is at most countable, then
there is a d such that F, m, d are coherent.

Proof. Let & consist of all classes {z; ¢ (2, F(¥q)se.e s Fly N}
where (1) Y is a set-formula of FL, (2) Yireees¥p€ dom(F) and
(3) x5 p(x:¥q0s000s¥y)} € @ . Then # is codable, at most countable
dually directed, and each element of # is non-empty set-theoreticall;
*.definable class. It follows that N # B. Pick a d e N # ; then F,
M, 4 are cpherent.

Theorem. If F, 771, d are coherent and F is at most coﬁntable,
Lneorem 4 .
then for each set u there is a v such that F v {(v,u)} , W, a
are coherent.

Proof. Let & consist of all classes {z; (a,2,F(y,) . Fly )}
where (1) ¢ is a set-formula of FL, (2) y,,...,¥, € dom(F) and (3)
1y ¢p(y,u,y2,...,yn)} e W . Ten & is codable, at most countable,
dually directed and each element of ! is set-theoretically definable.

Assume {z; ¢ (d,z, F(yz), oo F(yn)} € 97 . Then

' {Yi ﬁf’(y,u,yz,.-..yn)} € ¥ and consequently »

{yi (3x1)¢(y.x1,y2,...,yn)} e M. Hence each element of & 1is
non-empty so N& £ #. Pick a ve N&; then Fu {v,udp , M, d are
coherent.

A similarity whose domain is V¥ is called an endomorphism.
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Theorem. Let FO, Wl, d be coherent and let Po be at most coun-
table. Then there is an endomorphism P such that F €SP and F, M, d
are coherent. '

Proof. Let {x_ ; 0 f « ¢} bve an enumeration of V. We shall
constr_uct a sequence ‘{Foc ; & e.Q} such that Foé , & s d are coherent
for each o€ £) s each F is at most countable, X € dom(F) , and
U{r j fexn Q} € F, . For each o, the existence of such an E,
is guaranteed by the above theorems; thus we simply pick the first
possible candidate in a fixed well-ordering of P (V) Finally, we
put F = U{F“ PG _Q} Evidently, ® is an endomorphism, F S F, and

F, %, d are coherent.

The preceding theorem has several important consequences; we are
going to present some of them.

Theorem. There is a semiset similar to the universal class V.

Proof. Let # be an ultrafilter such that, for each y,
{x; yex} e # . (Evidently, there is such an %% .) Let F be an
endomorphism and let d be a set such that F, /4 ». d are coherent. Put
A = F"V, Then A8V, Since {x; yex} € M for each y, we have
P(y) e d and consequently A< d.

This theorem makes precise of our vague remarks to the effeect
that in all considerations in the alternative set theory V can be
replaced by an appropriate semiset.

Theorem. For each X there is a Y and a set d such that X&Y,
Y&d and
(Vx)x€X & Fin(x) => ¢(x))) => ¢(d)
for each set-formula ¢ of FL,

Proof. Let M be such that {x; yex} € & for each y €X and,
moreover, {x; ¢{(x)} €@ for each set-formula ¢ of FL satisfied
by each finite subset of X. Evidently, there is such an . Let F
be an endomorphism and d a set such that F, Wl, d are coherent. Put
Y = F"X, If yeX then {x; yex} €# and hence F(y) ed; thus Y<d.
If ¢(x,) is a set-formula of FL satisfied by each finite subset of

X then {x, ¢(x)p € B and consequently ¢(d). » O
e

Observe that each class similar to a function is itself a
funetion and that each subset of a function is a function. Thus we
have the following.
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Corollary. For each function F there are functions ¢ and g sw
that F&G, G Sg and, in addition,
(V£ SF)(Fin(f) => ¢ (£)) => ¢ (&)
for each set-formula ¢ of FL.

This is a strengthening of the axiom of prolongation since by
this corollary, also various uncountable functions have .prolongatic
Trivially, not every fumction can be prolonged to a function which
a setj but for each function there is a similar funetion having a
prolongation to a function which is a set.

All above notions and theorems involving formulas of FL can be
generalized by replacing FL by PLC where C is at most countable
class. Details are left to the reader as an exercise.
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